Skip to main content
Log in

Stretching Elasticity and Flexibility of Single Polyformaldehyde Chain

  • Rapid Communication
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

In this work, the single-chain elasticity of polyformaldehyde (POM) is studied, for the first time, by employing atomic force microscopy (AFM)-based single molecule force spectroscopy (SMFS). We find that the single-chain elasticity of POM in a nonpolar organic solvent (nonane) can be described well by a theoretical model (QM-FRC model), when the rotating unit length is 0.144 nm (C-O bond length). After comparison, POM is more flexible than polystyrene (a typical polymer with C-C backbone) at the single-chain level, which is reasonable since the C-O bond has a lower rotation barrier than C-C bond. This result indicates that the flexibility of a polymer chain can be tuned by the C-O bond proportion in backbone, which casts new light on the rational design of new synthetic polymers in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mie, G.; Hengstenberg, J.; Staudinger, H.; Johner, H.; Signer, R. Der polymere Formaldehyd, ein Modell der Cellulose. Naturwissenschaften 1927, 15, 379–380.

    Article  CAS  Google Scholar 

  2. Mark, J. E. Physical properties of polymers handbook. Springer: New York, 2007.

    Book  Google Scholar 

  3. Hama, H.; Tashiro, K. Structural changes in non-isothermal crystallization process of melt-cooled polyoxymethylene[II] evolution of lamellar stacking structure derived from SAXS and WAXS data analysis. Polymer 2003, 44, 2159–2168.

    Article  CAS  Google Scholar 

  4. Bai, S.; Liu, J.; Wang, Q. Effect of PEO on nonisothermal crystallization of POM in POM/PEO blends. Polym. Mater. Sci. Eng. 2007, 23, 136–139.

    CAS  Google Scholar 

  5. Carazzolo, G. Structure of the normal crystal form of polyoxymethylene. J. Polym. Sci., Part A: Polym. Chem. 1963, 1, 1573–1583.

    Google Scholar 

  6. Komatsu, T.; Enoki, S.; Aoshima, A. The effects of pressure on drawing polyoxymethylene: 1. Processing. Polymer 1991, 32, 1983–1987.

    Article  CAS  Google Scholar 

  7. Brew, B.; Ward, I. M. Study of the production of ultra-high modulus polyoxymethylene by tensile drawing at high temperatures. Polymer 1978, 19, 1338–1344.

    Article  CAS  Google Scholar 

  8. Grassie, N.; Roche, R. S. Some solution properties of polyoxymethylenes. J. Polym. Sci., Part C: Polym. Symp. 1968, 16, 4207–4213.

    Article  Google Scholar 

  9. Stockmayer, W. H.; Chan, L. L. Solution properties of polyoxymethylene. J. Polym. Sci., Part A-2 1966, 4, 437–446.

    Article  CAS  Google Scholar 

  10. Dudina, L. A.; Zharova, T. È.; Karmilova, L. V.; Yenikolopyan, N. S. The effect of stabilizing additives in the degradation of polyformaldehyde. Polym. Sci. U.S.S.R. 1964, 6, 2137–2144.

    Article  Google Scholar 

  11. Janshoff, A.; Neitzert, M.; Oberdörfer, Y.; Fuchs, H. Force spectroscopy of molecular systems-single molecule spectroscopy of polymers and biomolecules. Angew. Chem. Int. Ed. 2000, 39, 3212–3237.

    Article  CAS  Google Scholar 

  12. Li, H.; Cao, Y. Protein mechanics: from single molecules to functional biomaterials. Acc. Chem. Res. 2010, 43, 1331–1341.

    Article  CAS  Google Scholar 

  13. Li, I. T. S.; Walker, G. C. Signature of Hydrophobic hydration in a single polymer. Proc. Natl. Acad. Sci. U. S. A. 2011, 108, 16527–16532.

    Article  CAS  Google Scholar 

  14. Liu, K.; Song, Y.; Feng, W.; Liu, N.; Zhang, W.; Zhang, X. Extracting a single polyethylene oxide chain from a single crystal by a combination of atomic force microscopy imaging and single-molecule force spectroscopy: toward the investigation of molecular interactions in their condensed states. J. Am. Chem. Soc. 2011, 133, 3226–3229.

    Article  CAS  Google Scholar 

  15. Lv, S.; Dudek, D. M.; Cao, Y.; Balamurali, M. M.; Gosline, J.; Li, H. Designed biomaterials to mimic the mechanical properties of muscles. Nature 2010, 465, 69–73.

    Article  CAS  Google Scholar 

  16. Tian, F.; Li, G.; Zheng, B.; Liu, Y.; Shi, S.; Deng, Y.; Zheng, P. Verification of sortase for protein conjugation by single-molecule force spectroscopy and molecular dynamics simulations. Chem. Commun. 2020, 56, 3943–3946.

    Article  CAS  Google Scholar 

  17. Wu, J.; Li, P.; Dong, C.; Jiang, H.; Bin, X.; Gao, X.; Qin, M.; Wang, W.; Bin, C.; Cao, Y. Rationally designed synthetic protein hydrogels with predictable mechanical properties. Nat. Commun. 2018, 9, 620.

    Article  Google Scholar 

  18. Yang, P.; Song, Y.; Feng, W.; Zhang, W. Unfolding of a single polymer chain from the single crystal by air-phase single-molecule force spectroscopy: toward better force precision and more accurate description of molecular behaviors. Macromolecules 2018, 51, 7052–7060.

    Article  CAS  Google Scholar 

  19. Zhao, P.; Xu, C.; Sun, C.; Xia, J.; Sun, L.; Li, J.; Xu, H. Exploring the difference of bonding strength between silver (I) and chalcogenides in block copolymer systems. Polym. Chem. 2020, 11, 7087–7093.

    Article  CAS  Google Scholar 

  20. Cheng, B.; Cui, S. The important roles of water in protein folding: an approach by single molecule force spectroscopy. Chinese J. Polym. Sci. 2018, 36, 379–384.

    Article  CAS  Google Scholar 

  21. Fu, L.; Wang, H.; Li, H. Harvesting mechanical work from folding-based protein engines: from single-molecule mechanochemical cycles to macroscopic devices. CCS Chem. 2019, 1, 138–147.

    Article  CAS  Google Scholar 

  22. Xing, H.; Li, Z.; Wang, W.; Liu, P.; Liu, J.; Song, Y.; Wu, Z. L.; Zhang, W.; Huang, F. Mechanochemistry of an interlocked poly[2]catenane: from single molecule to bulk gel. CCS Chem. 2020, 2, 513–523.

    Article  CAS  Google Scholar 

  23. Xia, J.; Li, H.; Xu, H. Measuring the strength of S/Se based dynamic covalent bonds. Acta Polymerica Sinica (in Chinese) 2020, 51, 205–213.

    CAS  Google Scholar 

  24. Xiang, W.; Li, Z.; Xu, C. Q.; Li, J.; Zhang, W.; Xu, H. Quantifying the bonding strength of gold-chalcogen bonds in block copolymer systems. Chem. — Asian J. 2019, 14, 1481–1486.

    Article  CAS  Google Scholar 

  25. Cai, W.; Xu, D.; Qian, L.; Wei, J.; Xiao, C.; Qian, L.; Lu, Z.; Cui, S. Force-induced transition of π-π stacking in a single polystyrene chain. J. Am. Chem. Soc. 2019, 141, 9500–9503.

    Article  CAS  Google Scholar 

  26. Zhang, F.; Gong, Z.; Cai, W.; Qian, H.; Lu, Z.; Cui, S. Single-chain mechanics of cis-1,4-polyisoprene and polysulfide. Polymer 2022, 240, 124473.

  27. Cao, M.; Liu, X.; Cui, S. Single-molecule mechanics of polyacrylamide under different liquid environments. Chem. J. Chinese Univ. 2021, 42, 2982–2988.

    Google Scholar 

  28. Oesterhelt, F.; Rief, M.; Gaub, H. E. Single molecule force spectroscopy by AFM indicates helical structure of poly(ethyleneglycol) in water. New J. Phys. 1999, 1, 6.1–6.11.

    Article  Google Scholar 

  29. Zhang, W.; Zhang, X. Single molecule mechanochemistry of macromolecules. Prog. Polym. Sci. 2003, 28, 1271–1295.

    Article  CAS  Google Scholar 

  30. Bao, Y.; Luo, Z.; Cui, S. Environment-dependent single-chain mechanics of synthetic polymers and biomacromolecules by atomic force microscopy-based single-molecule force spectroscopy and the implications on advanced polymer materials. Chem. Soc. Rev. 2020, 49, 2799–2827.

    Article  CAS  Google Scholar 

  31. Li, I. T. S.; Walker, G. C. Interfacial free energy governs single polystyrene chain collapse in water and aqueous solutions. J. Am. Chem. Soc. 2010, 132, 6530–6540.

    Article  CAS  Google Scholar 

  32. Qian, L.; Cai, W.; Xu, D.; Bao, Y.; Lu, Z.; Cui, S. Single-molecule studies reveal that water is a special solvent for amylose and natural cellulose. Macromolecules 2019, 52, 5006–5013.

    Article  CAS  Google Scholar 

  33. Luo, Z.; Zhang, A.; Chen, Y.; Shen, Z.; Cui, S. How big is big enough? Effect of length and shape of side chains on the single-chain enthalpic elasticity of a macromolecule Macromolecules 2016, 49, 3559–3565.

    Article  CAS  Google Scholar 

  34. Hugel, T.; Rief, M.; Seitz, M.; Gaub, H. E.; Netz, R. R. Highly stretched single polymers: atomic-force-microscope experiments versus ab-initio theory. Phys. Rev. Lett. 2005, 94, 48301–48304.

    Article  Google Scholar 

  35. Cui, S.; Yu, Y.; Lin, Z. Modeling single chain elasticity of single-stranded DNA: a comparison of three models. Polymer 2009, 50, 930–935.

    Article  CAS  Google Scholar 

  36. Wang, K.; Pang, X.; Cui, S. Inherent stretching elasticity of a single polymer chain with a carbon-carbon backbone. Langmuir 2013, 29, 4315–4319.

    Article  CAS  Google Scholar 

  37. Tadokoro, H.; Chatani, Y.; Yoshihara, T.; Tahara, S.; Murahashi, S. Structural studies on polyethers, [-CH2)m-O-]n. II. Molecular structure of polyethylene oxide. Macromol. Chem. Phys. 1964, 73, 109–127.

    Article  CAS  Google Scholar 

  38. Price, C. C. Polyethers. American Chemical Society: Washington, 1975; Vol. 1.

    Book  Google Scholar 

  39. Xu, J.; Cao, N.; Xiao, Y.; Luo, Z.; Bao, Y.; Cui, S. Revealing the relationship between the biocompatibility and the bound water of poly(ethylene glycol) by single-molecule force spectroscopy. Acta Polymerica Sinica (in Chinese) 2020, 51, 754–761.

    CAS  Google Scholar 

  40. Liu, C.; Cui, S.; Wang, Z.; Zhang, X. Single chain mechanical property of poly(N-vinyl-2-pyrrolidone) and interaction with small molecules. J. Phys. Chem. B 2005, 109, 14807–14812.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. 21774102).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shu-Xun Cui.

Electronic Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, JX., Qian, HJ., Gong, Z. et al. Stretching Elasticity and Flexibility of Single Polyformaldehyde Chain. Chin J Polym Sci 40, 333–337 (2022). https://doi.org/10.1007/s10118-022-2679-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-022-2679-3

Keywords

Navigation