Skip to main content

Advertisement

Log in

Super Strong and Tough Elastomers Enabled by Sacrificial Segregated Network

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

The integration of high strength and toughness concurrently is a vital requirement for elastomers from the perspective of long-term durability and reliability. Unfortunately, these properties are generally conflicting in artificial materials. In the present work, we propose a facile strategy to simultaneously toughen and strengthen elastomers by constructing 3D segregated filler network via a simple latex mixing method. The as-fabricated elastomers are featured by a microscopic 3D interconnected segregated network of rigid graphene oxide (GO) nanosheets and a continuous soft matrix of sulfur vulcanized natural rubber (NR). We demonstrate that the interconnected segregated filler network ruptures preferentially upon deformation, and thus is more efficient in energy dissipation than the dispersed filler network. Therefore, the segregated filler network exhibits better reinforcing effects for the rubber matrix. Moreover, the excellent energy dissipating ability also contributes to the outstanding crack growth resistance through the release of concentrated stress at the crack tip. As a result, the strength, toughness and fatigue resistance of the nanocomposites are concurrently enhanced. The methodology in this work is facile and universally applicable, which may provide new insights into the design of elastomers with both extraordinary static and dynamic mechanical performance for practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Singha, N. K.; Bhattacharjee, S.; Sivaram, S. Hydrogenation of diene elastomers, their properties and applications: a critical review. Rubber Chem. Technol. 1997, 70, 309–367.

    CAS  Google Scholar 

  2. Huang, J.; Tang, Z.; Yang, Z.; Guo, B. Bioinspired interface engineering in elastomer/graphene composites by constructing sacrificial metal-ligand bonds. Macromol. Rapid Commun. 2016, 37, 1040–1045.

    CAS  PubMed  Google Scholar 

  3. Molinari, N.; Sutton, A.; Stevens, J.; Mostofi, A. In An atomistic model for cross-linked HNBR elastomers used in seals, APS March Meeting, 2015.

  4. Lei, W.; Zhou, X.; Russell, T. P.; Hua, K. C.; Yang, X.; Qiao, H.; Wang, W.; Li, F.; Wang, R.; Zhang, L. High performance bio-based elastomers: energy efficient, sustainable materials for tires. J. Mater. Chem. A 2016, 10, 1039.

    Google Scholar 

  5. Gong, J. P. Materials both tough and soft. Science 2014, 344, 161.

    CAS  PubMed  Google Scholar 

  6. Zhao, X. Designing toughness and strength for soft materials. Proc. Natl. Acad. Sci. USA 2017, 114, 8138–8140.

    CAS  PubMed  Google Scholar 

  7. Bai, R.; Yang, Q.; Tang, J.; Morelle, X. P.; Vlassak, J.; Suo, Z. Fatigue fracture of tough hydrogels. Extreme Mech. Lett. 2017, 15, 91–96.

    Google Scholar 

  8. Keten, S.; Xu, Z.; Ihle, B.; Buehler, M. J. Nanoconfinement controls stiffness, strength and mechanical toughness of β-sheet crystals in silk. Nat. Mater. 2010, 9, 359.

    CAS  PubMed  Google Scholar 

  9. Luo, M. C.; Zeng, J.; Fu, X.; Huang, G.; Wu, J. Toughening diene elastomers by strong hydrogen bond interactions. Polymer 2016, 106, 21–28.

    CAS  Google Scholar 

  10. Liu, J.; Tan, C. S. Y.; Yu, Z.; Lan, Y.; Abell, C.; Scherman, O. A. Biomimetic supramolecular polymer networks exhibiting both toughness and self-recovery. Adv. Mater. 2017, 29, 1604951.

    Google Scholar 

  11. Nakahata, M.; Takashima, Y.; Harada, A. Highly flexible, tough, and self-healing supramolecular polymeric materials using host-guest interaction. Macromol. Rapid Commun. 2016, 37, 86–92.

    CAS  PubMed  Google Scholar 

  12. Xu, Z. Mechanics of metal-catecholate complexes: the roles of coordination state and metal types. Sci. Rep. 2013, 3, 2914.

    PubMed  PubMed Central  Google Scholar 

  13. Zheng, S. Y.; Ding, H.; Qian, J.; Yin, J.; Wu, Z. L.; Song, Y.; Zheng, Q. Metal-coordination complexes mediated physical hydrogels with high toughness, stick-slip tearing behavior, and good processability. Macromolecules 2016, 49, 9637–9646.

    CAS  Google Scholar 

  14. Filippidi, E.; Cristiani, T. R.; Eisenbach, C. D.; Waite, J. H.; Israelachvili, J. N.; Ahn, B. K.; Valentine, M. T. Toughening elastomers using mussel-inspired iron-catechol complexes. Science 2017, 358, 502.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Liu, J.; Wang, S.; Tang, Z.; Huang, J.; Guo, B.; Huang, G. Bioinspired engineering of two different types of sacrificial bonds into chemically cross-linked cis-1,4-polyisoprene toward a highperformance elastomer. Macromolecules 2016, 49, 8593–8604.

    CAS  Google Scholar 

  16. Zhou, X.; Guo, B.; Zhang, L.; Hu, G. H. Progress in bio-inspired sacrificial bonds in artificial polymeric materials. Chem. Soc. Rev. 2017, 46, 6301–6329.

    CAS  PubMed  Google Scholar 

  17. Haque, M. A.; Kurokawa, T.; Kamita, G.; Gong, J. P. Lamellar bilayers as reversible sacrificial bonds to toughen hydrogel: hysteresis, self-recovery, fatigue resistance, and crack blunting. Macromolecules 2011, 44, 8916–8924.

    CAS  Google Scholar 

  18. Zhu, B.; Jasinski, N.; Benitez, A.; Noack, M.; Park, D.; Goldmann, A. S.; Barner-Kowollik, C.; Walther, A. Hierarchical nacre mimetics with synergistic mechanical properties by control of molecular interactions in self-healing polymers. Angew. Chem. Int. Ed. 2015, 54, 8653–8657.

    CAS  Google Scholar 

  19. Van Meerbeek, I. M.; Mac Murray, B. C.; Kim, J. W.; Robinson, S. S.; Zou, P. X.; Silberstein, M. N.; Shepherd, R. F. Morphing metal and elastomer bicontinuous foams for reversible stiffness, shape memory, and self-healing soft machines. Adv. Mater. 2016, 28, 2801–2806.

    CAS  PubMed  Google Scholar 

  20. Takahashi, R.; Sun, T. L.; Saruwatari, Y.; Kurokawa, T.; King, D. R.; Gong, J. P. Creating stiff, tough, and functional hydrogel composites with low-melting-point alloys. Adv. Mater. 2018, 30, 1706885.

    Google Scholar 

  21. Wu, X.; Han, Y.; Zhang, X.; Lu, C. Highly sensitive, stretchable, and wash-durable strain sensor based on ultrathin conductive layer@polyurethane yarn for tiny motion monitoring. ACS Appl. Mater. Interfaces 2016, 8, 9936–9945.

    CAS  PubMed  Google Scholar 

  22. Li, C.; Yang, Z.; Tang, Z.; Guo, B.; Tian, M.; Zhang, L. A scalable strategy for constructing three-dimensional segregated graphene network in polymer via hydrothermal self-assembly. Chem. Eng. J. 2019, 363, 300–308.

    CAS  Google Scholar 

  23. Gong, T.; Peng, S. P.; Bao, R. Y.; Yang, W.; Xie, B. H.; Yang, M. B. Low percolation threshold and balanced electrical and mechanical performances in polypropylene/carbon black composites with a continuous segregated structure. Compos. Part B 2016, 99, 348–357.

    CAS  Google Scholar 

  24. Liu, Y. F.; Feng, L. M.; Chen, Y. F.; Shi, Y. D.; Chen, X. D.; Wang, M. Segregated polypropylene/cross-linked poly(ethylene-co-1-octene)/multi-walled carbon nanotube nanocomposites with low percolation threshold and dominated negative temperature coefficient effect: towards electromagnetic interference shielding and thermistors. Compos. Sci. Technol. 2018, 159, 152–161.

    CAS  Google Scholar 

  25. Lin, Y.; Dong, X.; Liu, S.; Chen, S.; Wei, Y.; Liu, L. Graphene-elastomer composites with segregated nanostructured network for liquid and strain sensing application. ACS Appl. Mater. Interfaces 2016, 8, 24143–24151.

    CAS  PubMed  Google Scholar 

  26. Zhao, S.; Lou, D.; Li, G.; Zheng, Y.; Zheng, G.; Dai, K.; Liu, C.; Jiang, Y.; Shen, C. Bridging the segregated structure in conductive polypropylene composites: an effective strategy to balance the sensitivity and stability of strain sensing performances. Compos. Sci. Technol. 2018, 163, 18–25.

    CAS  Google Scholar 

  27. Cao, J.; Lu, C.; Zhuang, J.; Liu, M.; Zhang, X.; Yu, Y.; Tao, Q. Multiple hydrogen bonding enables the self-healing of sensors for human-machine interactions. Angew. Chem. Int. Ed. 2017, 56, 8795–8800.

    CAS  Google Scholar 

  28. Liu, J.; Zhao, F.; Tao, Q.; Cao, J.; Yu, Y.; Zhang, X. Visualized simulation for the nanostructure design of flexible strain sensors: from a numerical model to experimental verification. Mater. Horiz. 2019, 6, 1892–1898.

    CAS  Google Scholar 

  29. George, N. C. S. J. C.; Mathiazhagan, A.; Joseph, R. High performance natural rubber composites with conductive segregated network of multiwalled carbon nanotubes. Compos. Sci. Technol. 2015, 116, 33–40.

    CAS  Google Scholar 

  30. Du, J.; Long, Z.; You, Z.; Zhang, L.; Feng, L.; Liu, P.; Chang, L. Comparison of electrical properties between multi-walled carbon nanotube and graphene nanosheet/high density polyethylene composites with a segregated network structure. Carbon 2011, 49, 1094–1100.

    CAS  Google Scholar 

  31. Zhan, Y. H.; Wang, J.; Zhang, K. Y.; Li, Y. C.; Meng, Y. Y.; Yan, N.; Wei, W. K.; Peng, F. B.; Xia, H. S. Fabrication of a flexible electromagnetic interference shielding Fe3O4@reduced graphene oxide/natural rubber composite with segregated network. Chem. Eng. J. 2018, 344, 184–193.

    CAS  Google Scholar 

  32. Zhan, Y.; Lavorgna, M.; Buonocore, G.; Xia, H. Enhancing electrical conductivity of rubber composites by constructing interconnected network of self-assembled graphene with latex mixing. J. Mater. Chem. 2012, 22, 10464–10468.

    CAS  Google Scholar 

  33. Li, H.; Yang, L.; Weng, G.; Xing, W.; Wu, J.; Huang, G. Toughening rubbers with a hybrid filler network of graphene and carbon nanotubes. J. Mater. Chem. A 2015, 3, 22385–22392.

    CAS  Google Scholar 

  34. Sliozberg, Y. R.; Hoy, R. S.; Mrozek, R. A.; Lenhart, J. L.; Andzelm, J. W. Role of entanglements and bond scission in high strain-rate deformation of polymer gels. Polymer 2014, 55, 2543–2551.

    CAS  Google Scholar 

  35. Creton, C.; Ciccotti, M. Fracture and adhesion of soft materials: a review. Rep. Prog. Phys. 2016, 79, 046601.

    PubMed  Google Scholar 

  36. Kazem, N.; Bartlett, M. D.; Majidi, C. Extreme toughening of soft materials with liquid metal. Adv. Mater. 2018, 30, 1706594.

    Google Scholar 

  37. Bueche, F.; Harding, S. W. A new absolute molecular weight method for linear polymers. J. Polym. Sci. 1958, 32, 177–186.

    CAS  Google Scholar 

  38. Zhu, Y.; Shen, Q.; Wei, L.; Fu, X.; Huang, C.; Zhu, Y.; Zhao, L.; Huang, G.; Wu, J. Ultra-tough, strong, and defect-tolerant elastomers with self-healing and intelligent-responsive abilities. ACS Appl. Mater. Interfaces 2019, 11, 29373–29381.

    CAS  PubMed  Google Scholar 

  39. Gong, J. P. Why are double network hydrogels so tough? Soft Matter 2010, 6, 2583–2590.

    CAS  Google Scholar 

  40. de Gennes, P. G. Soft adhesives. Langmuir 1996, 12, 4497–4500.

    CAS  Google Scholar 

  41. Brown, H. R. Effects of chain pull-out on adhesion of elastomers. Macromolecules 1993, 26, 1666–1670.

    CAS  Google Scholar 

  42. Sun, J. Y.; Zhao, X.; Illeperuma, W. R. K.; Chaudhuri, O.; Oh, K. H.; Mooney, D. J.; Vlassak, J. J.; Suo, Z. Highly stretchable and tough hydrogels. Nature 2012, 489, 133.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Tanaka, Y.; Kuwabara, R.; Na, Y. H.; Kurokawa, T.; Gong, J. P.; Osada, Y. Determination of fracture energy of high strength double network hydrogels. J. Phys. Chem. B 2005, 109, 11559–11562.

    CAS  PubMed  Google Scholar 

  44. Webber, R. E.; Creton, C.; Brown, H. R.; Gong, J. P. Large strain hysteresis and mullins effect of tough double-network hydrogels. Macromolecules 2007, 40, 2919–2927.

    CAS  Google Scholar 

  45. Carretero-González, J.; Retsos, H.; Verdejo, R.; Toki, S.; Hsiao, B. S.; Giannelis, E. P.; López-Manchado, M. A. Effect of nanoclay on natural rubber microstructure. Macromolecules 2008, 41, 6763–6772.

    Google Scholar 

  46. Tang, M.; Xing, W.; Wu, J.; Huang, G.; Xiang, K.; Guo, L.; Li, G. Graphene as a prominent antioxidant for diolefin elastomers. J. Mater. Chem. A 2015, 3, 5942–5948.

    CAS  Google Scholar 

  47. Wu, J.; Huang, G.; Li, H.; Wu, S.; Liu, Y.; Zheng, J. Enhanced mechanical and gas barrier properties of rubber nanocomposites with surface functionalized graphene oxide at low content. Polymer 2013, 54, 1930–1937.

    CAS  Google Scholar 

  48. Martin, C. A.; Sandler, J. K. W.; Shaffer, M. S. P.; Schwarz, M. K.; Bauhofer, W.; Schulte, K.; Windle, A. H. Formation of percolating networks in multi-wall carbon-nanotube-epoxy composites. Compos. Sci. Technol. 2004, 64, 2309–2316.

    CAS  Google Scholar 

  49. Bhattacharyya, S.; Sinturel, C.; Bahloul, O.; Saboungi, M. L.; Thomas, S.; Salvetat, J. P. Improving reinforcement of natural rubber by networking of activated carbon nanotubes. Carbon 2008, 46, 1037–1045.

    CAS  Google Scholar 

  50. Lu, Y. L.; Li, Z.; Yu, Z. Z.; Tian, M.; Zhang, L. Q.; Mai, Y. W. Microstructure and properties of highly filled rubber/clay nanocomposites prepared by melt blending. Compos. Sci. Technol. 2007, 67, 2903–2913.

    CAS  Google Scholar 

  51. Vadukumpully, S.; Paul, J.; Mahanta, N.; Valiyaveettil, S. Flexible conductive graphene/poly(vinyl chloride) composite thin films with high mechanical strength and thermal stability. Carbon 2011, 49, 198–205.

    CAS  Google Scholar 

  52. Wu, J.; Cai, L. H.; Weitz, D. A. Tough self-healing elastomers by molecular enforced integration of covalent and reversible networks. Adv. Mater. 2017, 29, 1702616.

    Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. 51673120).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guang-Su Huang or Jin-Rong Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Y., Wei, LY., Fu, X. et al. Super Strong and Tough Elastomers Enabled by Sacrificial Segregated Network. Chin J Polym Sci 39, 377–386 (2021). https://doi.org/10.1007/s10118-020-2484-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-020-2484-9

Keywords

Navigation