Skip to main content
Log in

Tunable Cis-cisoid Helical Conformation of Poly(3,5-disubstibuted phenylacetylene)s Stabilized by nπ* Interaction

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

A series of novel cis poly(phenylacetylene)s (PPAs) substituted at meta-position(s) by two alkoxycarbonyl pendants, i.e., sP-Me-C8/rP-Me-C8, P-Me-C12, sP-Et-C4, sP-2C4 and sP-Oct-C4, were synthesized under the catalysis of [Rh(nbd)Cl]2 (nbd = norbornadiene). The dependence of elongation, screw sense, and stimuli response of helical polyene backbone on the structure of pendant, solvent, and temperature was systematically investigated in both solution and solid states. Because of nπ* interaction between vicinal carbonyl groups, sP-Me-C8/rP-Me-C8 could adopt contracted cis-cisoid helix in THF, toluene, CH2Cl2, and CHCl3. Such an intramolecular interaction was sensitive to the hydrogen bond donating ability of solvent and temperature, but insensitive to the dielectric constant and polarity of solvent. In poly(3-methoxycarbonyl-5-alkoxycarbonylphenylacetylene), the longer the chiral alkyl chain was, the easier the stable cis-cisoid helix could be achieved. However, when the methoxycarbonyl was changed to ethoxycarbonyl, sec-butyloxycarbonyl, and octyloxycarbonyl pendant groups, only cis-transoid helix was obtained at room temperature due to the increased steric hindrance. Moreover, lowering temperature was found to facilitate the stabilization of nπ* interactions, and reversible temperature-dependent stereomutations were achieved in sP-Me-C8 and sP-Et-C4 depending on the solvent where they were dissolved. These results suggested that the long alkyl chain, small pendant size, and lower temperature favored the stabilization of intramolecular nπ* interactions and the formation of contracted, cis-cisoid helices for poly(3,5-diester substituted phenylacetylene)s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Paulini, R.; Müller, K.; Diederich, F. Orthogonal multipolar interactions in structural chemistry and biology. Angew. Chem. Int. Ed.2005, 44, 1788–1805.

    Article  CAS  Google Scholar 

  2. Singh, S. K.; Das, A. The n→χ* interaction: a rapidly emerging non-covalent interaction. Phys. Chem. Chem. Phys.2015, 17, 9596–9612.

    Article  CAS  PubMed  Google Scholar 

  3. Bretscher, L. E.; Jenkins, C. L.; Taylor, K. M.; DeRider, M. L.; Raines, R. T. Conformational stability of collagen relies on a stereoelectronic effect. J. Am. Chem. Soc.2001, 123, 777–778.

    Article  CAS  PubMed  Google Scholar 

  4. Bartlett, G. A.; Choudhary, A.; Raines, R. T.; Woolfson, D. N. n→χ* Interactions in proteins. Nat. Chem. Biol.2010, 6, 615–620.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Adler, M.; Davey, D. D.; Phillips, G. B.; Kim, S. H.; Jancarik, J.; Rumennik, G.; Light, D. R.; Whitlow, M. Preparation, characterization, and the crystal structure of the inhibitor ZK-807834(CI-1031) complexed with factor Xa. Biochemistry2000, 39, 12534–12542.

    Article  CAS  PubMed  Google Scholar 

  6. Horton, J. R.; Sawada, K.; Nishibori, M.; Zhang, X.; Cheng, X. Two polymorphic forms of human histamine methyltransferase: structural, thermal, and kinetic comparisons. Structure2001, 9, 837–849.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Newberry, R. W.; Raines, R. T. The n→π* interaction. Acc. Chem. Res.2017, 50, 1838–1846.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kamer, K. J.; Choudhary, A.; Raines, R. T. Intimate interactions with carbonyl groups: dipole-dipole or n→π*? J. Org. Chem.2013, 78, 2099–2103.

    Article  CAS  PubMed  Google Scholar 

  9. Choudhary, A.; Gandla, D.; Krow, G. R.; Raines, R. T. Nature of amide carbonyl-carbonyl interactions in proteins. J. Am. Chem. Soc.2009, 131, 7244–7246.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Erdmann, R. S.; Wennemers, H. Effect of sterically demanding substituents on the conformational stability of the collagen triple helix. J. Am. Chem. Soc.2012, 134, 17117–17124.

    Article  CAS  PubMed  Google Scholar 

  11. Dai, N.; Etzkorn, F. A. Cis-trans proline isomerization effects on collagen triple-helix stability are limited. J. Am. Chem. Soc.2009, 131, 13728–13732.

    Article  CAS  PubMed  Google Scholar 

  12. Gorske, B. C.; Stringer, J. R.; Bastian, B. L.; Fowler, S. A.; Blackwell, H. E. New strategies for the design of folded peptoids revealed by a survey of noncovalent interactions in model systems. J. Am. Chem. Soc.2009, 131, 16555–16567.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Caumes, C.; Roy, O.; Faure, S.; Taillefumier, C. The click triazolium peptoid side chain: a strong cis-amide inducer enabling chemical diversity. J. Am. Chem. Soc.2012, 134, 9553–9556.

    Article  CAS  PubMed  Google Scholar 

  14. Choudhary, A.; Kamer, K. J.; Powner, M. W.; Sutherland, J. D.; Raines, R. T. A stereoelectronic effect in prebiotic nucleotide synthesis. ACS Chem. Biol.2010, 5, 655–657.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Choudhary, A.; Kamer, K. J.; Raines, R. T. An n→π* interaction in aspirin: implications for structure and reactivity. J. Org. Chem.2011, 76, 7933–7937.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Blanco, S.; López, J. C.; Mata, S.; Alonso, J. L. Conformations of γ-aminobutyric acid (GABA): the role of the n→π* interaction. Angew. Chem. Int. Ed.2010, 49, 9187–9192.

    Article  CAS  Google Scholar 

  17. Newberry, R. W.; Raines, R. T. n→π* Interactions in poly(lactic acid) suggest a role in protein folding. Chem. Commun.2013, 49, 7699–7701.

    Article  CAS  Google Scholar 

  18. Tang, K.; Green, M. M.; Cheon, K. S.; Selinger, J. V.; Garetz, B. A. chiral conflict. The effect of temperature on the helical sense of a polymer controlled by the competition between structurally different enantiomers: from dilute solution to the lyotropic liquid crystal state. J. Am. Chem. Soc.2003, 125, 7313–7323.

    Article  CAS  PubMed  Google Scholar 

  19. Shah, P. N.; Min, J.; Chae, C. G.; Nishikawa, N.; Suemasa, D.; Kakuchi, T.; Satoh, T.; Lee, J. S. “Helicity inversion”: linkage effects of chiral poly(n-hexyl isocyanate)s. Macromolecules2012, 45, 8961–8969.

    Article  CAS  Google Scholar 

  20. Das, R. K.; Gocheva, V.; Hammink, R.; Zouani, O. F.; Rowan, A. E. Stress-stiffening-mediated stem-cell commitment switch in soft responsive hydrogels. Nat. Mater.2016, 15, 318–325.

    Article  CAS  PubMed  Google Scholar 

  21. Wu, Z. -Q.; Nagai, K.; Banno, M.; Okoshi, K.; Onitsuka, K.; Yashima, E. Enantiomer-selective and helix-sense-selective living block copolymerization of isocyanide enantiomers initiated by single-handed helical poly(phenyl isocyanide)s. J. Am. Chem. Soc.2009, 131, 6708–6718.

    Article  CAS  PubMed  Google Scholar 

  22. Zhou, L.; Jiang, Z. Q.; Xu, L.; Liu, N.; Wu, Z. Q. Polythiophene-block-poly(phenyl isocyanide) copolymers: one-pot synthesis, properties and applications. Chinese J. Polym. Sci.2017, 35, 1447–1456.

    Article  CAS  Google Scholar 

  23. Huang, J.; Shen, L.; Zou, H.; Liu, N. Enantiomer-selective living polymerization of rac-phenyl isocyanide using chiral palladium catalyst. Chinese J. Polym. Sci.2018, 36, 799–804.

    Article  CAS  Google Scholar 

  24. Wang, Y. Q.; Chen, Y.; Jiang, Z. Q.; Liu, F.; Liu, F.; Zhu, Y. Y.; Liang, Y.; Wu, Z. Q. Halogen effects on phenylethynyl palladium(II) complexes for living polymerization of isocyanides: a combined experimental and computational investigation. Sci. China Chem.2019, 62, 491–499.

    Article  CAS  Google Scholar 

  25. Siriwardane, D. A.; Kulikov, O.; Rokhlenko, Y.; Perananthan, S.; Novak, B. M. Stereocomplexation of helical polycarbodiimides synthesized from achiral monomers bearing isopropyl pendants. Macromolecules2017, 50, 9162–9172.

    Article  CAS  Google Scholar 

  26. Reuther, J. F.; Siriwardane, D. A.; Campos, R.; Novak, B. M. Solvent tunable self-assembly of amphiphilic rod-coil block copolymers with chiral, helical polycarbodiimide segments: polymeric nanostructures with variable shapes and sizes. Macromolecules2015, 48, 6890–6899.

    Article  CAS  Google Scholar 

  27. Yashima, E.; Matsushima, T.; Okamoto, Y. Chirality assignment of amines and amino alcohols based on circular dichroism induced by helix formation of a stereoregular poly((4-carboxyphenyl)acetylene) through acid-base complexation. J. Am. Chem. Soc.1997, 119, 6345–6359.

    Article  CAS  Google Scholar 

  28. Suzuki, Y.; Miyagi, Y.; Shiotsuki, M.; Inai, Y.; Masuda, T.; Sanda, F. Synthesis and helical structures of poly(ω-alkynamide)s having chiral side chains: effect of solvent on their screw-sense inversion. Chem. Eur. J.2014, 20, 15131–15143.

    Article  CAS  PubMed  Google Scholar 

  29. Chen, B.; Deng, J. P.; Liu, X. Q.; Yang, W. T. Novel category of optically active core/shell nanoparticles: the core consisting of a helical-substituted polyacetylene and the shell consisting of a vinyl polymer. Macromolecules2010, 43, 3177–3182.

    Article  CAS  Google Scholar 

  30. Zhao, Z. Y.; Wang, S.; Ye, X. C.; Zhang, J.; Wan, X. H. Planar-to-axial chirality transfer in the polymerization of phenylacetylenes. ACS Macro Lett.2017, 6, 205–209.

    Article  CAS  Google Scholar 

  31. Li, S.; Liu, K.; Kuang, G.; Masuda, T.; Zhang, A. Thermoresponsive helical poly(phenylacetylene)s. Macromolecules2014, 47, 3288–3296.

    Article  CAS  Google Scholar 

  32. Yang, G.; He, C. L.; Zou, G. Synthesis of optically active polymer and structural modulation using circularly polarized light. Acta Polymerica Sinica (in Chinese) 2017, 1725–1738.

    Google Scholar 

  33. Nakano, Y.; Fujiki, M. Circularly polarized light enhancement by helical polysilane aggregates suspension in organic optofluids. Macromolecules2011, 44, 7511–7519.

    Article  CAS  Google Scholar 

  34. Nakashima, H.; Koe, J. R.; Torimitsu, K.; Fujiki, M. Transfer and amplification of chiral molecular information to polysilylene aggregates. J. Am. Chem. Soc.2001, 123, 4847–4848.

    Article  CAS  PubMed  Google Scholar 

  35. Nakano, T.; Okamoto, Y.; Hakata, K. Asymmetric polymerization of triphenylmethyl methacrylate leading to a one-handed helical polymer: mechanism of polymerization. J. Am. Chem. Soc.1992, 114, 1318–1329.

    Article  CAS  Google Scholar 

  36. Reggelin, M.; Doerr, S.; Klussmann, M.; Schultz, M.; Holbach, M. Helically chiral polymers: a class of ligands for asymmetric catalysis. PNAS2004, 101, 5461–5466.

    Article  CAS  PubMed  Google Scholar 

  37. Wang, R.; Li, X. F.; Bai, J. W.; Zhang, J.; Liu, A. H.; Wan, X. H. Chiroptical and thermotropic properties of helical styrenic polymers: effect of achiral group. Macromolecules2014, 47, 1553–1562.

    Article  CAS  Google Scholar 

  38. Cui, J. X.; Lu, X. C.; Liu, A. H.; Wan, X. H.; Zhou, Q. F. Long-range chirality transfer in free radical polymerization of bulky vinyl monomers containing laterally attached p-terphenyl groups. Macromolecules2009, 42, 7678–7688.

    Article  CAS  Google Scholar 

  39. Zhi, J. G.; Zhu, Z. G.; Liu, A. H.; Cui, J. X.; Wan, X. H.; Zhou, Q. F. Odd-even effect in free radical polymerization of optically active 2,5-bis[(4′-alkoxycarbonyl)-phenyl]styrene. Moeromolecules2008, 41, 1594–1597.

    Article  CAS  Google Scholar 

  40. Li, X. F.; Wang, R.; Chu, Y.; Zheng, Y. J.; Zhang, J.; Wan, X. H. Helix-sense-selective radical polymerization of vinyl biphenyl monomers. Acta Polymerica Sinica (in Chinese) 2017, 1609–1615.

    Google Scholar 

  41. Prince, R. B.; Barnes, S. A.; Moore, J. S. Foldamer-based molecular recognition. J. Am. Chem. Soc.2000, 122, 2758–2762.

    Article  CAS  Google Scholar 

  42. Brunsveld, L.; Meijer, E. W.; Prince, R. B.; Moore, J. S. Self-assembly of folded m-phenylene ethynylene oligomers into helical columns. J. Am. Chem. Soc.2001, 123, 7978–7984.

    Article  CAS  PubMed  Google Scholar 

  43. Li, P.; Lai, Y. Q.; Wang, Y.; Qian, Y. X.; Duan, W. B.; Li, C. L.; Wang, Z. H.; Fang, Q. J.; Wang, H.; Tu, B.; Geng, Y. F.; Zeng, Q. D. Adsorption of helical and saddle-shaped oligothiophenes on solid surface. Sci. China Chem.2018, 61, 844–849.

    Article  CAS  Google Scholar 

  44. Yashima, E.; Ousaka, N.; Taura, D.; Shimomura, K.; Ikai, T.; Maeda, K. Supramolecular helical systems: helical assemblies of small molecules, foldamers, and polymers with chiral amplification and their functions. Chem. Rev.2016, 116, 13752–13990.

    Article  CAS  PubMed  Google Scholar 

  45. Freire, F.; Quiñoá, E.; Riguera, R. Supramolecular assemblies from poly(phenylacetylene)s. Chem. Rev.2016, 116, 1242–1271.

    Article  CAS  PubMed  Google Scholar 

  46. Lam, J. W. Y.; Tang, B. Z. Functional polyacetylenes. Acc. Chem. Res.2005, 38, 745–754.

    Article  CAS  PubMed  Google Scholar 

  47. Rudick, J. G.; Percec, V. Induced helical backbone conformations of self-organizable dendronized polymers. Acc. Chem. Res.2008, 41, 1641–1652.

    Article  CAS  PubMed  Google Scholar 

  48. Freire, F.; Seco, J. M.; Quiñoá, E.; Riguera, R. Chiral amplification and helical-sense tuning by mono- and divalent metals on dynamic helical polymers. Angew. Chem. Int. Ed.2011, 50, 11692–11696.

    Article  CAS  Google Scholar 

  49. Aoki, T.; Kaneko, T.; Maruyama N.; Sumi, A.; Takahashi, M.; Sato, T.; Teraguchi, M. Helix-sense-selective polymerization of phenylacetylene having two hydroxy groups using a chiral catalytic system. J. Am. Chem. Soc.2003, 125, 6346–6347.

    Article  CAS  PubMed  Google Scholar 

  50. Wang, S.; Feng, X. Y.; Zhao, Z. Y.; Zhang, J.; Wan, X. H. Reversible cis-cisoid to cis-transoid helical structure transition in poly(3,5-disubstituted phenylacetylene)s. Macromelecules2016, 49, 8407–8417.

    Article  CAS  Google Scholar 

  51. Leiras, S.; Freire, F.; Seco, J. M.; Quiñoá, E.; Riguera, R. Controlled modulation of the helical sense and the elongation of poly(phenylacetylene)s by polar and donor effects. Chem. Sci.2013, 4, 2735–2743.

    Article  CAS  Google Scholar 

  52. Rodríguez, R.; Quiñoá, E.; Riguera, R.; Freire, F. Architecture of chiral poly(phenylacetylene)s: from compressed/highly dynamic to stretched/quasi-static helices. J. Am. Chem. Soc.2016, 138, 9620–9628.

    Article  PubMed  CAS  Google Scholar 

  53. Leiras, S.; Freire, F.; Quiñoá, E.; Riguera, R. Reversible assembly of enantiomeric helical polymers: from fibers to gels. Chem. Sci.2015, 6, 246–253.

    Article  CAS  PubMed  Google Scholar 

  54. Liu, L. J.; Zang, Y.; Hadano, S.; Aoki, T.; Teraguchi, M.; Kaneko, T.; Namikoshi, T. New achiral phenylacetylene monomers having an oligosiloxanyl group most suitable for helix-sense-selective polymerization and for obtaining good optical resolution membrane materials. Macromolecules2010, 43, 9268–9276.

    Article  CAS  Google Scholar 

  55. Liu, L. J.; Namikoshi, T.; Zang, Y.; Aoki, T.; Hadano, S.; Abe, Y.; Wasuzu, I.; Tsutsuba, T.; Teraguchi, M.; Kaneko, T. Top-down preparation of self-supporting supramolecular polymeric membranes using highly selective photocyclic aromatization of cis-cisoid helical poly(phenylacetylene)s in the membrane state. J. Am. Chem. Soc.2013, 135, 602–605.

    Article  CAS  PubMed  Google Scholar 

  56. Teraguchi, M.; Tanioka, D.; Kaneko, T.; Aoki, T. Helix-sense-selective polymerization of achiral phenylacetylenes with two N-alkylamide groups to generate the one-handed helical polymers stabilized by intramolecular hydrogen bonds. ACS Macro Lett.2012, 1, 1258–1261.

    Article  CAS  Google Scholar 

  57. Wang, S; Feng, X. Y.; Zhang, J.; Yu, P.; Guo, Z. X.; Li, Z. B.; Wan, X. H. Helical conformations of poly(3,5-disubstituted phenylacetylene)s tuned by pendant structure and solvent. Mactomolecules2017, 50, 3489–3499.

    Article  CAS  Google Scholar 

  58. Wang, S.; Tan, J. Y.; Guan, X. Y.; Chen, J. X.; Zhang, J.; Wan, X. H. Hydrogen bonds driven conformation autoregulation and sol-gel transition of poly(3,5-disubstituted phenylacetylene)s. Eur. Polym. J.2019, 118, 312–319.

    Article  CAS  Google Scholar 

  59. Wang, S.; Chen, J. X.; Feng, X. Y.; Shi, G.; Zhang, J.; Wan, X. H. Conformation shift switches the chiral amplification of helical copolyphenylacetylenes from abnormal to normal “sergeants-and-soldiers” effect. Mactomolecules2017, 50, 4610–4615.

    Article  CAS  Google Scholar 

  60. Wang, S.; Shi, G.; Guan, X. Y.; Zhang, Jie, Wan, X. H. Cis-cisoid helical structures of poly(3,5-disubstituted phenylacetylene)s stabilized by intramolecular n→χ* interactions. Macromolecules2018, 51, 1251–1259.

    Article  CAS  Google Scholar 

  61. Percec, V.; Rudick, J. G.; Peterca, M.; Wagner, M.; Obata, M.; Mitchell, C. M.; Cho, W. D.; Balagurusamy, V. S. K.; Heiney, P. A. Thermoreversible cis-cisoidal to cis-transoidal isomerization of helical dendronized polyphenylacetylenes. J. Am. Chem. Soc.2005, 127, 15257–15264.

    Article  CAS  PubMed  Google Scholar 

  62. Percec, V.; Rudick, J. G.; Peterca, M.; Heiney, P. A. Nanomechanical function from self-organizable dendronized helical polyphenylacetylenes. J. Am. Chem. Soc.2008, 135, 7503–7508.

    Article  CAS  Google Scholar 

  63. Motoshige, A.; Mawatari, Y.; Yoshida, Y.; Seki, C.; Matsuyama, H.; Tabata, M. Irreversible helix rearrangement from cis-transoid to cis-cisoid in poly(p-n-hexyloxyphenylacetylene) induced by heat-treatment in solid phase. J. Polym. Sci., Part A: Polym. Chem.2012, 55, 3008–3015.

    Article  CAS  Google Scholar 

  64. Marcus, Y. The properties of organic liquids that are relevant to their use as solvating solvents. Chem. Soc. Rev.1993, 22, 409–416.

    Article  CAS  Google Scholar 

  65. Jessop, P. G.; Jessop, D. A.; Fu, D. B.; Phan, L. Solvatochromic parameters for solvents of interest in green chemistry. Green Chem.2012, 14, 1245–1259.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 51833001 and 21674002).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jie Zhang or Xin-Hua Wan.

Electronic Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Cai, SL., Zhang, J. et al. Tunable Cis-cisoid Helical Conformation of Poly(3,5-disubstibuted phenylacetylene)s Stabilized by nπ* Interaction. Chin J Polym Sci 38, 685–695 (2020). https://doi.org/10.1007/s10118-020-2376-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-020-2376-z

Keywords

Navigation