Skip to main content
Log in

Enantiomer-selective Living Polymerization of rac-Phenyl Isocyanide Using Chiral Palladium Catalyst

  • Rapid Communication
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

We report the polymerization of phenyl isocyanides with the chiral palladium(II) initiating system. The resulting polymers with optically active properties were obtained by polymerization of the racemic isocyanide monomer (rac-1), and enantiomerically unbalanced polymerization of the monomer was found, providing substantial evidence for the enantiomer-selective polymerization of rac-1 mediated through chiral catalyst. A comparison between the enantiomerically pure monomers, 4-isocyanobenzoyl-L-alanine decyl ester (1s) and 4-isocyanobenzoyl-D-alanine decyl ester (1r), revealed a drastic discrepancy in the reactivity ratio of their homopolymerizations. It turned out that the monomer reactivity ratio of 1s was higher than that of 1r with chiral ligands. The results clearly demonstrated the inclination for incorporation of the 1s enantiomer during the polymerization process and thus resulted in the enantiomer-selective polymerization in this system. The effects of the catalyst chirality on the optically active properties of polymerization were investigated, and it was concluded that the formation of higher-ordered conformation with a handed helicity might be attributed to the chiral induction of chiral palladium(II) catalyst. Moreover, the polymers obtained through the enantiomer-selective polymerization of the enantiomerically pure monomer were with a significant improvement of the optical activity if the chirality of the monomer and the catalyst matched with each other.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Okamoto, Y.; Suzuki, K.; Ohta, K.; Hatada, K.; Yuki, H. Optically active poly(triphenylmethyl methacrylate) with onehanded helical conformation. J. Am. Chem. Soc. 1979, 101(16), 4763–4765

    Article  CAS  Google Scholar 

  2. Miyake, G. M.; Mariott, W. R.; Chen, E. Y. X. Asymmetric coordination polymerization of acrylamides by enantiomeric metallocenium ester enolate catalysts. J. Am. Chem. Soc. 2007, 129(21), 6724–6725

    Article  CAS  PubMed  Google Scholar 

  3. Wang, R.; Li, X. F.; Bai, J. W.; Zhang, J.; Liu, A. H.; Wan, X. H. Chiroptical and thermotropic properties of helical styrenic polymers: effect of achiral group. Macromolecules 2014, 47(5), 1553–1562

    Article  CAS  Google Scholar 

  4. Cui, J. X.; Zhang, J.; Wan, X. H. Unexpected stereomutation dependence on the chemical structure of helical vinyl glycopolymers. Chem. Commun. 2012, 48(36), 4341–4343

    Article  CAS  Google Scholar 

  5. Zhu, Y. Y.; Yin, T. T.; Li, X. L.; Su, M.; Xue, Y. X.; Yu, Z. P.; Liu, N.; Yin, J.; Wu, Z. Q. Synthesis and chiroptical properties of helical polyallenes bearing chiral amide pendants. Macromolecules 2014, 47(20), 7021–7029

    Article  CAS  Google Scholar 

  6. Wu, Z. Q.; Radcliffe, J. D.; Ono, R. J.; Chen, Z.; Li, Z. C.; Bielawski, C. W. Synthesis of conjugated diblock copolymers: two mechanistically distinct, sequential living polymerizations using a single catalyst. Polym. Chem. 2012, 3(4), 874–881

    Article  CAS  Google Scholar 

  7. Zhang, W. M.; Zhang, J.; Qiao, Z.; Yin, J. Functionally oriented tumor microenvironment responsive polymeric nanoassembly: engineering and applications. Chinese J. Polym. Sci. 2018, 36(3), 273–287

    Article  CAS  Google Scholar 

  8. Makiguchi, W.; Kobayashi, S.; Furusho, Y.; Yashima, E. Formation of a homo double helix of a conjugated polymer with carboxy groups and amplification of the macromolecular helicity by chiral amines sandwiched between the strands. Angew. Chem. Int. Ed. 2013, 52(20), 5275–5279

    Article  CAS  Google Scholar 

  9. Zhou, L.; Jiang, Z. Q.; Xu, N.; Liu, N.; Wu, Z. Q. Polythiophene-block-poly(phenyl isocyanide) copolymers: onepot synthesis, properties and applications. Chinese J. Polym. Sci. 2017, 35(12), 1447–1456

    Article  CAS  Google Scholar 

  10. Zhou, L.; Shen, L.; Huang, J.; Liu, N.; Zhu, Y. Y.; Wu, Z. Q. Optically active helical polyisocyanides bearing chiral phosphine pendants: facile synthesis and application in enantioselective Rauhut-Currier reaction. Chinese J. Polym. Sci. 2018, 36(2), 163–170

    Article  CAS  Google Scholar 

  11. Green, M. M.; Peterson, N. C.; Sato, T.; Teramoto, A.; Cook, R.; Lifson, S. A helical polymer with a cooperative response to chiral information. Science 1995, 268(5219), 1860–1866

    Article  CAS  PubMed  Google Scholar 

  12. Li, J.; Schuster, G. B.; Cheon, K. S.; Green, M. M.; Selinger, J. V. Switching a helical polymer between mirror images using circularly polarized light. J. Am. Chem. Soc. 2000, 122(11), 2603–2612

    Article  CAS  Google Scholar 

  13. Maeda, K.; Wakasone, S.; Shimomura, K.; Ikai, T.; Kanoh, S. Helical polymer brushes with a preferred-handed helix-sense triggered by a terminal optically active group in the pendant. Chem. Commun. 2012, 48(27), 3342–3344

    Article  CAS  Google Scholar 

  14. Sakai, N.; Satoh, T.; Kakuchi, T. Rod-like amphiphile of diblock polyisocyanate leading to cylindrical micelle and spherical vesicle in water. Macromolecules 2014, 47(5), 1699–1704

    Article  CAS  Google Scholar 

  15. Reuther, J. F.; DeSousa, J. D.; Novak, B. M. Direct probing of regioregularity for polycarbodiimide systems via 15N NMR analysis. Macromolecules 2012, 45(19), 7719–7728

    Article  CAS  Google Scholar 

  16. Reuther, J. F.; Novak, B. M. Evidence of entropy-driven bistability through 15N NMR analysis of a temperature-and solvent-induced, chiroptical switching polycarbodiimide. J. Am. Chem. Soc. 2013, 135(51), 19292–19303

    Article  CAS  PubMed  Google Scholar 

  17. Budhathoki-Uprety, J.; Jena, P. V.; Roxbury, D.; Heller, D. A. Helical polycarbodiimide cloaking of carbon nanotubes enables inter-nanotube exciton energy transfer modulation. J. Am. Chem. Soc. 2014, 136(44), 15545–15550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Reuther, J. F.; Siriwardane, D. A.; Kulikov, O. V.; Batchelor, B. L.; Campos, R.; Novak, B. M. Facile synthesis of rod-coil block copolymers with chiral, helical polycarbodiimide segments via postpolymerization CuAAC "click" coupling of functional end groups. Macromolecules 2015, 48(10), 3207–3216

    Article  CAS  Google Scholar 

  19. Liu, X.; Song, C.; Luo, X. F.; Yang, W. T.; Deng, J. P. "Sergeants and soldiers rule" in helical substitutedacetylene copolymer emulsions. Chinese J. Polym. Sci. 2013, 31(1), 179–186

    Article  CAS  Google Scholar 

  20. Akagi, K. Helical polyacetylene: asymmetric polymerization in a chiral liquid-crystal field. Chem. Rev. 2009, 109(11), 5354–5401

    Article  CAS  PubMed  Google Scholar 

  21. Matsushita, S.; Kyotani, M.; Akagi, K. Hierarchically controlled helical graphite films prepared from iodine-doped helical polyacetylene films using morphology-retaining carbonization. J. Am. Chem. Soc. 2011, 133(44), 17977–17992

    Article  CAS  PubMed  Google Scholar 

  22. Sakai, R.; Sakai, N.; Satoh, T.; Li, W.; Zhang, A. F.; Kakuchi, T. Strict size specificity in colorimetric anion detection based on poly(phenylacetylene) receptor bearing second generation lysine dendrons. Macromolecules 2011, 44(11), 4249–4257

    Article  CAS  Google Scholar 

  23. Li, S.; Liu, K.; Kuang, G. C.; Masuda, T.; Zhang, A. F. Thermoresponsive helical poly(phenylacetylene)s. Macromolecules 2014, 47(10), 3288–3296

    Article  CAS  Google Scholar 

  24. Song, C.; Liu, X.; Liu, D.; Ren, C. L.; Yang, W. T.; Deng, J. P. Optically active particles of chiral polymers. Macromol. Rapid Commun. 2013, 34(18), 1426–1445

    Article  CAS  PubMed  Google Scholar 

  25. Rodriguez, R.; Quinoá, E.; Riguera, R.; Freire, F. Architecture of chiral poly(phenylacetylene)s: from compressed/highly dynamic to stretched/quasi-static helices. J. Am. Chem. Soc. 2016, 138(30), 9620–9628

    Article  CAS  PubMed  Google Scholar 

  26. Zhao, Z. Y.; Wang, S.; Ye, X. C.; Zhang, J.; Wan, X. H. Planar-to-axial chirality transfer in the polymerization of phenylacetylenes. ACS Macro Lett. 2017, 6(3), 205–209

    Article  CAS  Google Scholar 

  27. Wang, S.; Chen, J. X.; Feng, X. Y.; Shi, G.; Zhang, J.; Wan, X. H. Conformation shift switches the chiral amplification of helical copoly(phenylacetylene)s from abnormal to normal "sergeants-and-soldiers" effect. Macromolecules 2017, 50(12), 4610–4615

    Article  CAS  Google Scholar 

  28. Yoshio, O.; Koji, O.; Heimei, Y. Highly asymmetric selective polymerization of (RS)-a-methylbenzyl methacrylate by grignard reagent-(-)-sparteine catalyst systems. Chem. Lett. 1977, 6(6), 617–620

    Article  Google Scholar 

  29. Okamoto, Y.; Urakawa, K.; Ohta, K.; Yuki, H. Asymmetricselective polymerization of (RS)-a-methylbenzyl methacrylate. Macromolecules 1978, 11(4), 719–723

    Article  CAS  Google Scholar 

  30. Okamoto, Y.; Suzuki, K.; Kitayama, T.; Yuki, H.; Kageyama, H.; Miki, K.; Tanaka, N.; Kasai, N. Kinetic resolution of racemic alpha-methylbenzy lmethacrylate:asymmetricselectivepolymerization catalyzed by Grignard reagent-(-)-sparteine derivative complexes. J. Am. Chem. Soc. 1982, 104(17), 4618–4624

    Article  CAS  Google Scholar 

  31. Spassky, N.; Wisniewski, M.; Pluta, C.; Le Borgne, A. Highly stereoelective polymerization of rac-(D,L)-lactide with a chiral schiffs base/aluminium alkoxide initiator. Macromol. Chem. Phys. 1996, 197(9), 2627–2637

    Article  CAS  Google Scholar 

  32. Boucard, V.; Dumas, P.; Sigwalt, P.; Guérin, P.; Fadel, A. Living stereospecific and enantioasymmetric polymerization of methylthiirane initiated by various bis(alkyl-S-cysteinato) cadmium. Eur. Polym. J. 1996, 32(4), 481–485

    Article  CAS  Google Scholar 

  33. Imai, T.; Hayakawa, K.; Satoh, T.; Kaga, H.; Kakuchi, T. Enantiomer-selective polymerization of (RS)-(phenoxymethyl) thiirane with diethylzinc/L-amino acid. J. Polym. Sci., Part A: Polym. Chem. 2002, 40(20), 3443–3448

    Article  CAS  Google Scholar 

  34. Tsuji, M.; Aoki, T.; Sakai, R.; Satoh, T.; Kaga, H.; Kakuchi, T. Enantiomer-selective radical cyclopolymerization of rac-2,4-pentanediyl dimethacrylate using a ruthenium-mediated chiral atom transfer radical polymerization initiating system. J. Polym. Sci., Part A: Polym. Chem. 2004, 42(18), 4563–4569

    Article  CAS  Google Scholar 

  35. Hirahata, W.; Thomas, R. M.; Lobkovsky, E. B.; Coates, G. W. Enantioselective polymerization of epoxides: a highly active and selective catalyst for the preparation of stereoregular polyethers and enantiopure epoxides. J. Am. Chem. Soc. 2008, 130(52), 17658–17659

    Article  CAS  PubMed  Google Scholar 

  36. Thomas, R. M.; Widger, P. C. B.; Ahmed, S. M.; Jeske, R. C.; Hirahata, W.; Lobkovsky, E. B.; Coates, G. W. Enantioselective epoxide polymerization using a bimetallic cobalt catalyst. J. Am. Chem. Soc. 2010, 132(46), 16520–16525

    Article  CAS  PubMed  Google Scholar 

  37. Zhu, H.; Luo, S. Z.; Wu, Z. Q. Living and enantiomer-selective polymerization of allene initiated by Ni complex containing chiral phosphine. Chin. Chem. Lett. 2018, DOI: 10.1016/j.cclet.2018.03.002

    Google Scholar 

  38. Makiguchi, K.; Yamanaka, T.; Kakuchi, T.; Terada, M.; Satoh, T. Binaphthol-derived phosphoric acids as efficient chiral organocatalysts for the enantiomer-selective polymerization of rac-lactide. Chem. Commun. 2014, 50(22), 2883–2885

    Article  CAS  Google Scholar 

  39. Li, H.; Ai, B. R.; Hong, M. Stereoselective ring-opening polymerization of rac-lactide by bulky chiral and achiral V-heterocyclic carbenes. Chinese J. Polym. Sci. 2017, 36(2), 231–236

    Article  CAS  Google Scholar 

  40. Zhao, W.; Li, C. Y.; Wu, C. J.; Liu, X. L.; Mou, Z. H.; Yao, C. G.; Cui, D. M. Synthesis of ultraviolet absorption polylactide via immortal polymerization of rac-lactide initiated by a Salanyttrium catalyst. Chinese J. Polym. Sci. 2017, 36(2), 202–206

    Article  CAS  Google Scholar 

  41. Zhong, Z. Y.; Dijkstra, P. J.; Feijen, J. Controlled and stereoselective polymerization oflactide: kinetics, selectivity, and microstructures. J. Am. Chem. Soc. 2003, 125(37), 11291–11298

    Article  CAS  PubMed  Google Scholar 

  42. Ahmed, S. M.; Poater, A.; Childers, M. I.; Widger, P. C. B.; LaPointe, A. M.; Lobkovsky, E. B.; Coates, G. W.; Cavallo, L. Enantioselective polymerization of epoxides using biaryl-linked bimetallic cobalt catalysts: a mechanistic study. J. Am. Chem. Soc. 2013, 135(50), 18901–18911

    Article  CAS  PubMed  Google Scholar 

  43. Xue, Y. X.; Zhu, Y. Y.; Gao, L. M.; He, X. Y.; Liu, N.; Zhang, W. Y.; Yin, J.; Ding, Y. S.; Zhou, H. P.; Wu, Z. Q. Air-stable (phenylbuta-1,3-diynyl)palladium(II) complexes: highly active initiators for living polymerization of isocyanides. J. Am. Chem. Soc. 2014, 136(12), 4706–4713

    Article  CAS  PubMed  Google Scholar 

  44. Chen, J. L.; Yang, L.; Wang, Q.; Jiang, Z. Q.; Liu, N.; Yin, J.; Ding, Y. S.; Wu, Z. Q. Helix-sense-selective and enantiomerselective living polymerization of phenyl isocyanide induced by reusable chiral lactide using achiral palladium initiator. Macromolecules 2015, 48(21), 7737–7746

    Article  CAS  Google Scholar 

  45. Zhou, W.; Su, X.; Tao, M. N.; Zhu, C. Z.; Zhao, Q. J.; Zhang, J. L. Chiral sulfinamide bisphosphine catalysts: design, synthesis, and application in highly enantioselective intermolecular crossrauhut-currier reactions. Angew. Chem. Int. Ed. 2015, 54(49), 14853–14857

    Article  CAS  Google Scholar 

  46. Zhang, Z. M.; Chen, P.; Li, W. B.; Niu, Y. F.; Zhao, X. L.; Zhang, J. L. A new type of chiral sulfinamide monophosphine ligands: stereodivergent synthesis and application in enantioselective gold(I)-catalyzed cycloaddition reactions. Angew. Chem. Int. Ed. 2014, 53(17), 4350–4354

    Article  CAS  Google Scholar 

  47. Kajitani, T.; Okoshi, K.; Sakurai, S. I.; Kumaki, J.; Yashima, E. Helix-sense controlled polymerization of a single phenyl isocyanide enantiomer leading to diastereomeric helical polyisocyanides with opposite helix-sense and cholesteric liquid crystals with opposite twist-sense. J. Am. Chem. Soc. 2006, 128(3), 708–709

    Article  CAS  PubMed  Google Scholar 

  48. Okamoto, Y.; Urakawa, K.; Yuki, H. Asymmetric selective polymerization of racemic methacrylates with the cyclohexylmagnesium bromide-(-)-sparteine system. J. Polym. Sci.. Polym. Chem. Ed. 1981, 19(6), 1385–1395

    Article  CAS  Google Scholar 

  49. Horeau, A. Interactions between enantiomers in solution; effect on the rotatory power. Optical purity and enantiomeric purity. Tetrahedron Lett. 1969, 36, 3121–3124

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 51673057, 21622402, and 21574036). N. Liu thanks Anhui Provincial Natural Science Foundation (No. 1608085MB41).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Na Liu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, J., Shen, L., Zou, H. et al. Enantiomer-selective Living Polymerization of rac-Phenyl Isocyanide Using Chiral Palladium Catalyst. Chin J Polym Sci 36, 799–804 (2018). https://doi.org/10.1007/s10118-018-2136-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-018-2136-5

Keywords

Navigation