Skip to main content
Log in

Conformational Properties of Comb-shaped Polyelectrolytes with Negatively Charged Backbone and Neutral Side Chains Studied by a Generic Coarse-grained Bead-and-Spring Model

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

A generic coarse-grained bead-and-spring model, mapped onto comb-shaped polycarboxylate-based (PCE) superplasticizers, is developed and studied by Langevin molecular dynamics simulations with implicit solvent and explicit counterions. The agreement on the radius of gyration of the PCEs with experiments shows that our model can be useful in studying the equilibrium sizes of PCEs in solution. The effects of ionic strength, side-chain number, and side-chain length on the conformational behavior of PCEs in solution are explored. Single-chain equilibrium properties, including the radius of gyration, end-to-end distance and persistence length of the polymer backbone, shape-asphericity parameter, and the mean span dimension, are determined. It is found that with the increase of ionic strength, the equilibrium sizes of the polymers decrease only slightly, and a linear dependence of the persistence length of backbone on the Debye screening length is found, in good agreement with the theory developed by Dobrynin. Increasing side-chain numbers and/or side-chain lengths increases not only the equilibrium sizes (radius of gyration and mean span) of the polymer as a whole, but also the persistence length of the backbone due to excluded volume interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Voycheck, C. L.; Tan, J. S.; Hara, M. Polyelectrolytes: Science and technology. Marcel Dekker, Inc., New York, 1993, p. 250.

    Google Scholar 

  2. Holm, C.; Joanny, J. F.; Kremer, K.; Netz, R. R.; Reineker, P.; Seidel, C.; Vilgis, T. A.; Winkler, R. G. Polyelectrolyte theory. in Polyelectrolytes with defined molecular architecture II. Berlin, Heidelberg, 2004, p. 67.

  3. Chremos, A.; Douglas, J. F. Influence of higher valent ions on flexible polyelectrolyte stiffness and counter-ion distribution. J. Chem. Phys.2016, 144, 164904–164913.

    PubMed  Google Scholar 

  4. Stevens, M. J.; Mcintosh, D.; Saleh, O. Simulations of stretching a strong, flexible polyelectrolyte. Macromolecules0012, 45, 5757–5765.

    Google Scholar 

  5. Toan, N. M.; Thirumalai, D. On the origin of the unusual behavior in the stretching of single-stranded DNA. J. Chem. Phys.2012, 136, 235103–235108.

    PubMed  PubMed Central  Google Scholar 

  6. Elder, R. M.; Jayaraman, A. Coarse-grained simulation studies of effects of polycation architecture on structure of the polycation and polycation-polyanion complexes. Macromolecules2012, 45, 8083–8096.

    CAS  Google Scholar 

  7. Bayramoglu, B.; Faller, R. Coarse-grained modeling of polystyrene in various environments by iterative Boltzmann inversion. Macromolecules2012, 45, 9205–9249.

    CAS  Google Scholar 

  8. Carrillo, J. M. Y.; Dobrynin, A. V. Polyelectrolytes in salt solutions: Molecular dynamics simulations. Macromolecules2011, 44, 5798–5816.

    CAS  Google Scholar 

  9. Carrillo, J. M. Y.; Dobrynin, A. V. Detailed molecular dynamics simulations of a model NaPSS in water. J. Phys. Chem. B2010, 114, 9391–9399.

    CAS  PubMed  Google Scholar 

  10. Saleh, O.; Mcintosh, D.; Pincus, P.; Ribeck, N. Nonlinear low-force elasticity of single-stranded DNA molecules. Phys. Rev. Lett.2009, 102, 068301.

    CAS  PubMed  Google Scholar 

  11. Chang, R.; Yethiraj, A. Dilute solutions of strongly charged flexible polyelectrolytes in poor solvents: Molecular dynamics simulations with explicit solvent. Macromolecules2006, 39, 821–828.

    CAS  Google Scholar 

  12. Liao, Q.; Dobrynin, A. V.; Rubinstein, M. Counterion-correlation-induced attraction and necklace formation in polyelectrolyte solutions: Theory and simulations. Macromolecules2006, 39, 1920–1938.

    CAS  Google Scholar 

  13. Dobrynin, A. V.; Rubinstein, M. Theory of polyelectrolytes in solutions and at surfaces. Prog. Polym. Sci.2005, 30, 1049–1118.

    CAS  Google Scholar 

  14. Limbach, H. J.; Holm, C. Single-chain properties of polyelectrolytes in poor solvent. J. Phys. Chem. B2003, 107, 8041–8055.

    CAS  Google Scholar 

  15. Micka, U.; Holm, C.; Kremer, K. Strongly charged, flexible polyelectrolytes in poor solvents: Molecular dynamics simulations. Langmuir1999, 15, 4033–4044.

    CAS  Google Scholar 

  16. Stevens, M. J.; Kremer, K. The nature of flexible linear polyelectrolytes in salt free solution: A molecular dynamics study. J. Chem. Phys.1995, 103, 1669.

    CAS  Google Scholar 

  17. Dobrynin, A. V. Theory and simulations of charged polymers: From solution properties to polymeric nanomaterials. Curr. Opin. Colloid In.2008, 13, 376–388.

    CAS  Google Scholar 

  18. Khokhlov, A. R.; Khalatur, P. G. Solution properties of charged hydrophobic/hydrophilic copolymers. Curr. Opin. Colloid In.2005, 10, 22–29.

    CAS  Google Scholar 

  19. Burak, Y.; Ariel, G.; Andelman, D. Onset of DNA aggregation in presence of monovalent and multivalent counterions. Biophys. J.2003, 85, 2100–2110.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Deming, T. J. Synthesis of side-chain modified polypeptides. Chem. Rev.2015, 116, 786–808.

    PubMed  Google Scholar 

  21. Zhang, Y.; Lu, H.; Lin, Y.; Cheng, J. Water-soluble polypeptides with elongated, charged side chains adopt ultrastable helical conformations. Macromolecules2011, 44, 6641–6644.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Wang, Y.; Zheng, M.; Meng, F.; Zhang, J.; Peng, R.; Zhong, Z. Branched polyethylenimine derivatives with reductively cleavable periphery for safe and efficient in vitro gene transfer. Biomacromolecules2011, 12, 1032–1040.

    CAS  PubMed  Google Scholar 

  23. Lu, H.; Wang, J.; Bai, Y.; Lang, J. W.; Liu, S.; Lin, Y.; Cheng, J. Ionic polypeptides with unusual helical stability. Nat. Commun.2011, 2, 206.

    PubMed  Google Scholar 

  24. Alonso, M. M.; Palacios, M.; Puertas, F. Compatibility between polycarboxylate-based admixtures and blended-cement pastes. Cem. Concr. Compos.2013, 35, 151–162.

    CAS  Google Scholar 

  25. Malferrari, D.; Fermani, S.; Galletti, P.; Goisis, M.; Tagliavini, E.; Falini, G. Shaping calcite crystals by means of comb polyelectrolytes having neutral hydrophilic teeth. Langmuir2013, 29, 1938–1947.

    CAS  PubMed  Google Scholar 

  26. Reese, J.; Plank, J. Adsorption of polyelectrolytes on calcium carbonate-which thermodynamic parameters are driving this process. J. Am. Ceram. Soc.2011, 94, 3515–3522.

    Google Scholar 

  27. Yamada, K.; Takahashi, T.; Hanehara, S.; Matsuhisa, M. Effects of the chemical structure on the properties of polycarboxylate-type superplasticizer. Cem. Concr. Res.2000, 30, 197–207.

    CAS  Google Scholar 

  28. Ran, Q.; Qiao, M.; Liu, J. Influence of Ca2+ on the performance of poly(acrylic acid)-g-poly(ethylene glycol) comb-like copolymers in cement suspensions. Iran Polym. J.2014, 23, 663–669.

    CAS  Google Scholar 

  29. Shu, X.; Ran, Q.; Liu, J.; Zhao, H.; Zhang, Q.; Wang, X.; Yang, Y.; Liu, J. Tailoring the solution conformation of polycarboxylate superplasticizer toward the improvement of dispersing performance in cement paste. Constr. Build. Mater2016, 116, 289–298.

    CAS  Google Scholar 

  30. Flatt, J. F.; Schober, I.; Raphael, E.; Plassard, C.; Lesniewska, E. Conformation of adsorbed comb copolymer dispersants. Langmuir2008, 25, 845–855.

    Google Scholar 

  31. Ran, Q.; Somasundaran, P.; Miao, C.; Liu, J; Wu, S.; Shen, J. Effect of the length of the side chains of comb-like copolymer dispersants on dispersion and rheological properties of concentrated cement suspensions. J. Colloid Interface Sci.2009, 336, 624–633.

    CAS  PubMed  Google Scholar 

  32. Winnefeld, F.; Becker, S.; Pakusch, J.; Götz, T. Effects of the molecular architecture of comb-shaped superplasticizers on their performance in cementitious systems. Cem. Concr. Compos.2007, 29, 251–262.

    CAS  Google Scholar 

  33. Kirby, G. H.; Lewis, J. A. Comb polymer architecture effects on the rheological property evolution of concentrated cement suspensions. J. Am. Ceram. Soc.2004, 87, 1643–1652.

    CAS  Google Scholar 

  34. Sappidi, P.; Muralidharan, S. S.; Natarajan, U. Conformations and hydration structure of hydrophobic polyelectrolyte atactic poly(ethac rylic acid) in dilute aqueous solution as a function of neutralization. Mol. Simul.2014, 40, 295–305.

    CAS  Google Scholar 

  35. Tong, K. F.; Song, X. F.; Sun, S. Y.; Xu, Y. X.; Yu, J. G. Molecular dynamics study of linear and comb-like polyelectrolytes in aqueous solution: Effect of Ca2+ ions. Mol. Phys.2014, 112, 2176–2183.

    CAS  Google Scholar 

  36. Zidar, J.; Lim, G. S.; Cheong, D. W.; Klähn, M. Protein-like dynamics of polycarbonate polymers in water. J. Phys. Chem. B2014, 119, 316–329.

    PubMed  Google Scholar 

  37. Sulatha, M. S.; Natarajan, U. Molecular dynamics simulations of PAA-PMA polyelectrolyte copolymers in dilute aqueous solution: Chain conformations and hydration properties. Ind. Eng. Chem. Res.2012, 51, 10833–10839.

    CAS  Google Scholar 

  38. Sulatha, M. S.; Natarajan, U. Origin of the difference in structural behavior of poly(acrylic acid) and poly(methacrylic acid) in aqueous solution discerned by explicit-solvent explicit-ion MD simulations. Ind. Eng. Chem. Res.2011, 50, 11785–11796.

    CAS  Google Scholar 

  39. Maskey, S.; Pierce, F.; Perahia, D.; Grest, G. S. Conformational study of a single molecule of poly para phenylene ethynylenes in dilute solutions. J. Chem. Phys.2011, 134, 244906–244914.

    PubMed  Google Scholar 

  40. Tribello, G. A.; Liew, C. C.; Parrinello, M. Binding of calcium and carbonate to polyacrylates. J. Phys. Chem. B0099, 113, 7081–7085.

    Google Scholar 

  41. Ju, S. P.; Lee, W. J.; Huang, C. I.; Cheng, W. Z.; Chung, Y. T. Structure and dynamics of water surrounding the poly(methacrylic acid): A molecular dynamics study. J. Chem. Phys.2007, 126, 224901–224912.

    PubMed  Google Scholar 

  42. Molnar, F.; Rieger, J. “Like-charge attraction” between anionic polyelectrolytes: Molecular dynamics simulations. Langmuir2005, 21, 786–789.

    CAS  PubMed  Google Scholar 

  43. Hehmeyer, O. J.; Arya, G.; Panagiotopoulos, A. Z.; Szleifer, I. Monte Carlo simulation and molecular theory of tethered polyelectrolytes. J. Chem. Phys.2007, 126, 244902.

    PubMed  Google Scholar 

  44. Luque-Caballero, G.; Martín-Molina, A.; Quesada-Pérez, M. Polyelectrolyte adsorption onto like-charged surfaces mediated by trivalent counterions: A Monte Carlo simulation study. J. Chem. Phys.2014, 140, 174701.

    PubMed  Google Scholar 

  45. Yu, S.; Larson, R. G. Monte-Carlo simulations of PAMAM dendrimer-DNA interactions. Soft Matter2014, 10, 5325–5336.

    CAS  PubMed  Google Scholar 

  46. Turesson, M.; Labbez, C.; Nonat, A. Calcium mediated polyelectrolyte adsorption on like-charged surfaces. Langmuir2011, 27, 13572–13581.

    CAS  PubMed  Google Scholar 

  47. Chremos, A.; Douglas, J. F. Counter-ion distribution around flexible polyelectrolytes having different molecular architecture. Soft Matter2016, 12, 2932–2941.

    CAS  PubMed  Google Scholar 

  48. Ghelichi, M.; Qazvini, N. T. Self-organization of hydrophobic-capped triblock copolymers with a polyelectrolyte midblock: A coarse-grained molecular dynamics simulation study. Soft Matter2016, 12, 4611–4620.

    CAS  PubMed  Google Scholar 

  49. Ghelichi, M.; Eikerling, M. H. Conformational properties of comblike polyelectrolytes: A coarse-grained MD study. J. Phys. Chem. B2016, 120, 2859–2867.

    CAS  PubMed  Google Scholar 

  50. Turesson, M.; Nonat, A.; Labbez, C. Stability of negatively charged platelets in calcium-rich anionic copolymer solutions. Langmuir2014, 30, 6713–6720.

    CAS  PubMed  Google Scholar 

  51. Liu, Z.; Shang, Y.; Feng, J.; Peng, C.; Liu, H.; Hu, Y. Effect of hydrophilicity or hydrophobicity of polyelectrolyte on the interaction between polyelectrolyte and surfactants: Molecular dynamics simulations. J. Phys. Chem. B2012, 116, 5516–5526.

    CAS  PubMed  Google Scholar 

  52. Spaeth, J. R.; Kevrekidis, I. G.; Panagiotopoulos, A. Z. A comparison of implicit-and explicit-solvent simulations of self-assembly in block copolymer and solute systems. J. Chem. Phys.2011, 134, 164902.

    PubMed  Google Scholar 

  53. Reddy, G.; Yethiraj, A. Solvent effects in polyelectrolyte adsorption: Computer simulations with explicit and implicit solvent. J. Chem. Phys.2010, 132, 074903.

    PubMed  Google Scholar 

  54. Košovan, P.; Limpouchová, Z.; Procházka, K. Conformational behavior of comb-like polyelectrolytes in selective solvent: Computer simulation study. J. Phys. Chem. B0077, 111, 8605–8611.

    Google Scholar 

  55. Hsiao, P. Y.; Luijten, E. Salt-induced collapse and reexpansion of highly charged flexible polyelectrolytes. Phys. Rev. Lett.2006, 97, 148301–148305.

    PubMed  Google Scholar 

  56. Liao, Q.; Dobrynin, A. V.; Rubinstein, M. Molecular dynamics simulations of polyelectrolyte solutions: Nonuniform stretching of chains and scaling behavior. Macromolecules0003, 36, 3386–3398.

    Google Scholar 

  57. Wynveen, A.; Likos, C. N. Interactions between planar polyelectrolyte brushes: Effects of stiffness and salt. Soft Matter2010, 6, 163–171.

    CAS  Google Scholar 

  58. Baratlo, M.; Fazli, H. Brushes of flexible, semiflexible, and rodlike diblock polyampholytes: Molecular dynamics simulation and scaling analysis. Phys. Rev. E2010, 81, 011801.

    Google Scholar 

  59. Baratlo, M.; Fazli, H. Molecular dynamics simulation of semiflexible polyampholyte brushes—The effect of charged monomers sequence. Eur. Phys. J.2009, 29, 131–138.

    CAS  Google Scholar 

  60. Csajka, F. S.; Netz, R. R.; Seidel, C.; Joanny, J. F. Collapse of polyelectrolyte brushes: Scaling theory and simulations. Eur. Phys. J.2001, 4, 505–513.

    CAS  Google Scholar 

  61. Seidel, C. Strongly stretched polyelectrolyte brushes. Macromolecules2000, 36, 2536–2543.

    Google Scholar 

  62. Merlitz, H.; He, G. L.; Wu, C. X.; Sommer, J. U. Nanoscale brushes: How to build a smart surface coating. Phys. Rev. Lett.2009, 102, 115702.

    PubMed  Google Scholar 

  63. Merlitz, H.; He, G. L.; Wu, C. X.; Sommer, J. U. Surface instabilities of monodisperse and densely grafted polymer brushes. Macromolecules2008, 41, 5070–5072.

    CAS  Google Scholar 

  64. Carrillo, J. M. Y.; Dobrynin, A. V. Morphologies of planar polyelectrolyte brushes in a poor solvent: Molecular dynamics simulations and scaling analysis. Langmuir2009, 25, 13158–13168.

    CAS  PubMed  Google Scholar 

  65. Guptha, V. S.; Hsiao, P. Y. Polyelectrolyte brushes in monovalent and multivalent salt solutions. Polymer2014, 55, 2900–2912.

    CAS  Google Scholar 

  66. Giraudeau, C.; D’Espinose De Lacaillerie, J. B.; Souguir, Z.; Nonat, Z.; Flatt, R. J. Surface and intercalation chemistry of polycarboxylate copolymers in cementitious systems. J. Am. Ceram. Soc.2009, 92, 2471–2488.

    CAS  Google Scholar 

  67. Lee, H.; Venable, R. M.; MacKerell Jr, A. D.; Pastor, R. W. Molecular dynamics studies of polyethylene oxide and polyethylene glycol: Hydrodynamic radius and shape anisotropy. Biophys. J.2008, 95, 1590–1599.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Gay, C.; Raphael, E. Comb-like polymers inside nanoscale pores. Adv. Colloid Inter. Sci.2001, 94, 229–236.

    CAS  Google Scholar 

  69. Pedersen, J. S.; Sommer, C. Temperature dependence of the virial coefficients and the chi parameter in semi-dilute solutions of PEG. In Scattering methods and the properties of polymer materials. Berlin, Heidelberg, 2005, pp. 70–78.

  70. Diehl, H. W.; Eisenriegler, E. Universal shape ratios for open and closed random walks: Exact results for all d. J. Phys. A: Math. Gen.1989, 22, L87.

    Google Scholar 

  71. Wang, Y.; Teraoka, I.; Hansen, F. Y.; Peters, G. H.; Hassager, O. Mean span dimensions of ideal polymer chains containing branches and rings. Macromolecules2010, 44, 403–412.

    CAS  Google Scholar 

  72. Hsu, H. P.; Paul, W.; Binder, K. Standard definitions of persistence length do not describe the local “intrinsic” stiffness of real polymer chains. Macromolecules2010, 43, 3094–3102.

    CAS  Google Scholar 

  73. Dobrynin, A. V. Electrostatic persistence length of semiflexible and flexible polyelectrolytes. Macromolecules2005, 38, 9304–9314.

    CAS  Google Scholar 

  74. Dorfman, K. D.; King, S. B.; Olson, D. W.; Thomas, J. D. P.; Tree, D. R. Beyond gel electrophoresis: Microfluidic separations, fluorescence burst analysis and DNA stretching. Chem. Rev.2012, 113, 2584–2667.

    PubMed  PubMed Central  Google Scholar 

  75. Paturej, J.; Sheiko, S. S.; Panyukov, S.; Rubinstein, M. Molecular structure of bottlebrush polymers in melts. Sci. Adv.2016, 2, 1601478–1601480.

    Google Scholar 

  76. Birshtein, T. M.; Borisov, O. V.; Zhulina, Y. B.; Khokhlov, A. R; Yurasova, T. A. Conformations of comb-like macromolecules. Polym. Sci.1987, 29, 1293–1300.

    Google Scholar 

  77. Feuz, L.; Leermakers, F. A. M.; Textor, M.; Borisov, O. Bending rigidity and induced persistence length of molecular bottle brushes: A self-consistent-field theory. Macromolecules2005, 38, 8891–8901.

    CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Key Research and Development Program of China (No. 2017YFB0310100).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, JH., Lu, LQ., Zhao, HX. et al. Conformational Properties of Comb-shaped Polyelectrolytes with Negatively Charged Backbone and Neutral Side Chains Studied by a Generic Coarse-grained Bead-and-Spring Model. Chin J Polym Sci 38, 371–381 (2020). https://doi.org/10.1007/s10118-020-2350-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-020-2350-9

Keywords

Navigation