Skip to main content
Log in

Crystallization Behavior and Dynamic Mechanical Properties of Poly(ε-caprolactone)/Octaisobutyl-Polyhedral Oligomeric Silsesquioxanes Composites Prepared via Different Methods

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Two octaisobutyl-polyhedral oligomeric silsesquioxanes (oib-POSS) reinforced biodegradable poly(ε-caprolactone) (PCL) composites were prepared via two different methods, i.e., melt compounding and solution casting, which were named as mPCL/oib-POSS and sPCL/oib-POSS, respectively, in this work. Oib-POSS dispersed finely in both composites; moreover, oib-POSS aggregates were larger in mPCL/oib-POSS than in sPCL/oib-POSS. Despite the different preparation methods, oib-POSS obviously promoted the crystallization of PCL, especially in sPCL/oib-POSS, but did not modify the crystal structure of PCL. The storage moduli of PCL were improved significantly in both composites. PCL/oib-POSS composites with enhanced crystallization behavior and improved dynamic mechanical properties were successfully prepared through both methods; moreover, the solution casting method was more effective than the melt compounding method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Woodruff, M. A.; Hutmacher, D. W. The return of a forgotten polymer-polycaprolactone in the 21st century. Prog. Polym. Sci., 2010, 35, 1217–1256.

    Article  CAS  Google Scholar 

  2. Dash, T. K.; Konkimalla, V. B. Poly-ɛ-caprolactone based formulations for drug delivery and tissue engineering: A review. J. Control. Release, 2012, 158, 15–33.

    Article  CAS  Google Scholar 

  3. Yoshimoto, H.; Shin, Y. M.; Terai, H.; Vacanti, J. P. A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering. Biomaterials, 2003, 24, 2077–2082.

    Article  CAS  Google Scholar 

  4. Kumari, A.; Yadav, S. K.; Yadav, S. C. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf. B, 2010, 75, 1–18.

    Article  CAS  Google Scholar 

  5. Kweon, H.; Yoo, M. K.; Park, I. K.; Kim, T. H.; Lee, H. C.; Lee, H. S.; Oh, J. S.; Akaike, T.; Cho, C. S. A novel degradable polycaprolactone networks for tissue engineering. Biomaterials, 2004, 24, 801–808.

    Article  Google Scholar 

  6. Sun, H. F.; Mei, L.; Song, C. X.; Cui, X. M.; Wang, P. Y. The in vivo degradation, absorption and excretion of PCL-based implant. Biomaterials, 2006, 27, 1735–1740.

    Article  CAS  Google Scholar 

  7. Ahmed, J.; Luciano, G.; Schizzi, I.; Arfat, Y. A.; Maggiore, S.; Thai, T. L. A. Non-isothermal crystallization behavior, rheological properties and morphology of poly(ɛ-caprolactone)/graphene oxide nanosheets composite films. Thermochim. Acta, 2018, 659, 96–104.

    Article  CAS  Google Scholar 

  8. Benhacine, F.; Hadj-Hamou, A. S.; Habi, A. Development of longterm antimicrobial poly(ɛ-caprolactone)/silver exchanged montmorillonite nanocomposite films with silver ion release property for active packaging use. Polym. Bull., 2016, 73, 1207–1227.

    Article  CAS  Google Scholar 

  9. Deng, S.; Ma, J. R.; Guo, Y. L.; Chen, F.; Fu, Q. One-step modification and nanofibrillation of microfibrillated cellulose for simultaneously reinforcing and toughening of poly(ɛ-caprolactone). Compos. Sci. Technol., 2018, 157, 168–177.

    Article  CAS  Google Scholar 

  10. Fadaie, M.; Mirzaei, E.; Geramizadeh, B.; Asvar, Z. Incorporation of nanofibrillated chitosan into electrospun PCL nanofibers makes scaffolds with enhanced mechanical and biological properties. Carbohyd. Polym., 2018, 199, 628–640.

    Article  CAS  Google Scholar 

  11. Gumede, T. P.; Luyt, A. S.; Hassan, M. K.; Perez-Camargo, R. A.; Tercjak, A.; Muller, A. J. Morphology, nucleation, and isothermal crystallization kinetics of poly(ɛ-caprolactone) mixed with a polycarbonate/MWCNTs masterbatch. Polymers, 2017, 9, 709–734.

    Article  Google Scholar 

  12. Kong, J.; Yu, Y.; Pei, X.; Han, C.; Tan, Y.; Dong, L. Polycaprolactone nanocomposite reinforced by bioresource starch-based nanoparticles. Int. J. Biol. Macromol., 2017, 102, 1304–1311.

    Article  CAS  Google Scholar 

  13. Saeed, K.; Park, S. Y.; Lee, H. J.; Baek, J. B.; Huh, W. S. Preparation of electrospun nanofibers of carbon nanotube/polycaprolactone nanocomposite. Polymer, 2006, 47, 8019–8025.

    Article  CAS  Google Scholar 

  14. Cordes, D. B.; Lickiss, P. D.; Rataboul, F. Recent developments in the chemistry of cubic polyhedral oligosilsesquioxanes. Chem. Rev., 2010, 110, 2081–2173.

    Article  CAS  Google Scholar 

  15. Phillips, S.; Haddad, T.; Tomczak, S. Developments in nanoscience: polyhedral oligomeric silsesquioxane (POSS)-polymers. Curr. Opin. Solid State Mater. Sci., 2004, 8, 21–29.

    Article  CAS  Google Scholar 

  16. Kuo, S. W.; Chang, F. C. POSS related polymer nanocomposites. Prog. Polym. Sci., 2011, 36, 1649–1696.

    Article  CAS  Google Scholar 

  17. Wu, J.; Mather, P. T. POSS polymers: Physical properties and biomaterials applications. Polym. Rev., 2009, 49, 25–63.

    Article  CAS  Google Scholar 

  18. Guan, W.; Qiu, Z. B. Isothermal crystallization kinetics, morphology, and dynamic mechanical properties of biodegradable poly(ɛ-caprolactone) and octavinyl-polyhedral oligomeric silsesquioxanes nanocomposites. Ind. Eng. Chem. Res., 2012, 51, 3203–3208.

    Article  CAS  Google Scholar 

  19. Pan, H.; Yu, J.; Qiu, Z. B. Crystallization and morphology studies of biodegradable poly(ɛ-caprolactone)/polyhedral oligomeric silsesquioxanes nanocomposites. Polym. Eng. Sci., 2011, 51, 2159–2165.

    Article  CAS  Google Scholar 

  20. Liu, W.; He, S.; Zhou, H. Effect of octa(epoxycyclohexyl) POSS on thermal, rheology property, and foaming behavior of PLA composites. J. Appl. Polym. Sci., 2018, 135, 46399.

    Article  Google Scholar 

  21. Yu, J.; Qiu, Z. B. Preparation and properties of biodegradable poly(L-lactide)/octamethyl-polyhedral oligomeric silsesquioxanes nanocomposites with enhanced crystallization rate via simple melt compounding. ACS Appl. Mater. Interfaces, 2011, 3, 890–897.

    Article  CAS  Google Scholar 

  22. Choi, J. H.; Jung, C. H.; Kang, D. W.; Hwang, I. T.; Choi, J. H. Preparation and characterization of crosslinked poly(ɛ-caprolactone)/polyhedral oligomeric silsesquioxane nanocomposites by electron beam irradiation. Nucl. Instrum. Meth. B, 2012, 287, 141–147.

    Article  CAS  Google Scholar 

  23. Teng, S. Q.; Jiang, Z. G.; Qiu, Z. B. Effect of different POSS structures on the crystallization behavior and dynamic mechanical properties of biodegradable poly(ethylene succinate). Polymer, 2019, 163, 68–73.

    Article  CAS  Google Scholar 

  24. Avrami, M. Kinetics of phase change. II. Transformation-time relations for random distribution of nuclei. J. Chem. Phys., 1940, 8, 212–224.

    CAS  Google Scholar 

  25. Avrami, M. Granulation, phase change, and microstructure kinetics of phase change. III. J. Chem. Phys., 1941, 9, 177–184.

    Article  CAS  Google Scholar 

  26. Wunderlich, B. Macromolecular physics, Vol. 2, Academic Press, New York, 1976.

    Google Scholar 

  27. Bassindale, A. R.; Liu, Z.H.; MacKinnon, I. A.; Taylor, P. G.; Yang, Y. X.; Light, M. E.; Horton, P. N.; Hursthouse, M. B. A higher yielding route for T8 silsesquioxane cages and X-ray crystal structures of some novel spherosilicates. Dalton Trans., 2003, 14, 2945–2949.

    Article  Google Scholar 

  28. Eastmond, G. Poly(ɛ-caprolactone) blends. Adv. Polym. Sci., 1999, 149, 59–223.

    Article  CAS  Google Scholar 

  29. Chen, B. Q.; Sun, K. Poly(ɛ-caprolactone)/hydroxyapatite composites: Effects of particle size, molecular weight distribution and irradiation on interfacial interaction and properties. Polym. Test., 2005, 24, 64–70.

    Article  CAS  Google Scholar 

  30. Chen, B. Q.; Sun, K.; Ren, T. Mechanical and viscoelastic properties of chitin fiber reinforced poly(ɛ-caprolactone). Eur. Polym. J., 2005, 41, 453–457.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Part of this research was financially supported by the National Natural Science Foundation of China (Nos. 51373020 and 51573016).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhi-Guo Jiang or Zhao-Bin Qiu.

Additional information

Dedicated to Prof. Zhishen Mo of Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, a well-known polymer physicist in polymer crystallization and X-ray diffraction, who unfortunately passed away on May 09, 2018.

Electronic Supplementary Information

10118_2020_2338_MOESM1_ESM.pdf

Crystallization Behavior and Dynamic Mechanical Properties of Poly(ε-caprolactone)/Octaisobutyl-Polyhedral Oligomeric Silsesquioxanes Composites Prepared via Different Methods

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teng, SQ., Jiang, ZG. & Qiu, ZB. Crystallization Behavior and Dynamic Mechanical Properties of Poly(ε-caprolactone)/Octaisobutyl-Polyhedral Oligomeric Silsesquioxanes Composites Prepared via Different Methods. Chin J Polym Sci 38, 158–163 (2020). https://doi.org/10.1007/s10118-020-2338-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-020-2338-5

Keywords

Navigation