Skip to main content
Log in

An Ion-imprinted Silica Gel Polymer Prepared by Surface Imprinting Technique Combined with Aqueous Solution Polymerization for Selective Adsorption of Ni(II) from Aqueous Solution

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

A novel Ni(II) ion-imprinted silica gel polymer was prepared via the surface imprinting technique combined with aqueous solution polymerization by using 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPS) as a functional monomer for the selective separation of Ni(II) from aqueous solution. The sorbent showed good chemical and thermal stability. Kinetics studies indicated that the equilibrium adsorption was achieved within 10 min and the adsorption kinetics fitted well with the pseudo-second-order kinetic model. The maximum adsorption capacity of the ion-imprinted polymer towards Ni(II) at the optimal pH of 7.0 was 66.22 mg·g−1. The relative selectivity coefficients of the sorbent were 9.23, 15.71, 14.72 and 20.15 for Ni(II)/Co(II), Ni(II)/Cu(II), Ni(II)/Zn(II) and Ni(II)/Pb(II), respectively. The adsorption isotherm fitted well with Langmuir isotherm model. The thermodynamic results indicated that the adsorption of Ni(II) was a spontaneous and endothermic process. The sorbent showed good reusability evidenced by six cycles of adsorption/desorption experiments. The precision of this method is satisfactory. Thus, the prepared sorbent can be considered as a promising sorbent for selective separation of Ni(II) in real water samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wahi, R.; Ngaini, Z; Jok, V. U. Removal of mercury, lead and copper from aqueous solution by activated carbon of palm oil empty fruit bunch. World Appl. Sci. J. 2013, 5, 84–91.

    Google Scholar 

  2. Kristiansen, K.; Christensen, J. M.; Henriksen, T.; Nielsen, N. H.; Menné, T. Determination of nickel in fingernails and forearm skin (stratum corneum). Anal. Chim. Acta 2000, 403(1-2), 265–272.

    Article  CAS  Google Scholar 

  3. Fu, J.; Chen, L.; Li, J.; Zhang, Z. Current status and challenges of ion imprinting. J. Mater. Chem. A 2015, 3(26), 13598–13627.

    Article  CAS  Google Scholar 

  4. Özcan, A. S.; Gök, Ö.; Özcan, A. Adsorption of lead(II) ions onto 8-hydroxy quinoline-immobilized bentonite. J. Hazard Mater. 2009, 161(1), 499–509.

    Article  Google Scholar 

  5. Xing, C.; Yang, Z. X.; Zhang, Z. H.; Wei, R.; Liu, Y. N.; Chen, H. J.; Hu, X. Y.; Cai, R.; Nie, L. H. Synthesis and application of novel magnetic lead(II) ion imprinted polymers based on multiwalled carbon nanotubes. Chinese J. Anal. Chem. 2013, 41(9), 1406–1412.

    Article  Google Scholar 

  6. Hande, P. E.; Samui, A. B.; Kulkarni, P. S. Highly selective monitoring of metals by using ion-imprinted polymers. Environ. Sci. Pollut. Res. 2015, 22(10), 7375–7404.

    Article  CAS  Google Scholar 

  7. Branger, C.; Meouche, W.; Margaillan, A. Recent advances on ion-imprinted polymers. React. Funct. Polym. 2013, 73(6), 859–875.

    Article  CAS  Google Scholar 

  8. Nishide, H.; Deguchi, J.; Tsuchida, E. Selective adsorption of metal ions on crosslinkedpoly(vinylpyridine) resin prepared with a metal ion as a template. Chem. Lett. 1976, 5(2), 169–174.

    Article  Google Scholar 

  9. Saraji, M.; Yousefi, H. Selective solid-phase extraction of Ni(II) by an ion-imprinted polymer from water samples. J. Hazard Mater. 2009, 167(1-3), 1152–1157.

    Article  CAS  Google Scholar 

  10. Vatanpour, V.; Madaeni, S. S.; Zinadini, S.; Rajabi, H. R. Development of ion imprinted technique for designing nickel ion selective membrane. J. Member. Sci. 2011, 373(1), 36–42.

    Article  CAS  Google Scholar 

  11. Singh, D. K.; Mishra, S. Synthesis, characterization and analytical applications of Ni(II)-ion imprinted polymer. Appl. Surf. Sci. 2010, 256(24), 7632–7637.

    Article  CAS  Google Scholar 

  12. Luo, F.; Huang, S.; Xiong, X.; Lai, X. Synthesis and characterization of Hg(II)-ion-imprinted polymer and its application for the determination of mercury in water samples. RSC Adv. 2015, 5(83), 67365–67373.

    Article  CAS  Google Scholar 

  13. Meouche, W.; Branger, C.; Beurroies, I.; Denoyel, R.; Margaillan, A. Inverse suspension polymerization as a new tool for the synthesis of ion-imprinted polymers. Macromol. Rapid Commun. 2012, 33(10), 928–932.

    Article  CAS  Google Scholar 

  14. Lenoble, V.; Meouche, W.; Laatikainen, K.; Garnier, C.; Brisset, H.; Margaillan, A.; Branger, C. Assessment and modelling of Ni(II) retention by an ion-imprinted polymer: application in natural samples. J. Colloid Interf. Sci. 2015, 448, 473–481.

    Article  CAS  Google Scholar 

  15. Sayar, O.; Torbati, N. A.; Saravani, H.; Mehrani, K.; Behbahani, A.; Zadeh, H. R. M. A novel magnetic ion imprinted polymer for selective adsorption of trace amounts of lead(II) ions in environment samples. J. Ind. Eng. Chem. 2014, 20(5), 2657–2662.

    Article  CAS  Google Scholar 

  16. Markowitz, M. A.; Deng, G.; Burleigh, M. C.; Wong, E. M.; Gaber, B. P. Influence of quaternary amine organosilane structure on the formation and adsorption properties of surface-imprinted silicates. Langmuir 2001, 17(22), 7085–7092.

    Article  CAS  Google Scholar 

  17. Jiang, N.; Chang, X.; Zheng, H.; He, Q.; Hu, Z. Selective solid-phase extraction of nickel(II) using a surface-imprinted silica gel sorbent. Anal. Chim. Acta 2006, 577(2), 225–231.

    Article  CAS  Google Scholar 

  18. Timin, A.; Rumyantsev, E.; Solomonov, A. Synthesis and application of amino-modified silicas containing albumin as hemoadsorbents for bilirubinadsorption. J. Non-Cryst. Solids 2014, 385(3), 81–88.

    Article  CAS  Google Scholar 

  19. Gao, B.; Du, J.; Zhang, Y. Preparation of arsenate anion surface-imprinted material IIP-PDMC/SiO2 and study on its ion recognition property. Ind. Eng. Chem. Res. 2013, 52(23), 7651–7659.

    Article  CAS  Google Scholar 

  20. Gao, B.; Meng, J.; Xu, Y.; Zhang, Y. J. Preparation of Fe(III) ion surface-imprinted material for removing Fe(III) impurity from lanthanide ion solutions. J. Ind. Eng. Chem. 2015, 24(4), 351–358.

    Article  CAS  Google Scholar 

  21. He, H.; Gan, Q.; Feng, C. Preparation and application of Ni(II) ion-imprinted silica gel polymer for selective separation of Ni(II) from aqueous solution. RSC Adv. 2017, 7(25), 15102–15111.

    Article  CAS  Google Scholar 

  22. Li, M.; Feng, C.; Li, M.; Zeng, Q.; Gan, Q. Synthesis and characterization of a surface-grafted Cd(II) ion-imprinted polymer for selective separation of Cd(II) ion from aqueous solution. Appl. Surf. Sci. 2015, 332(4), 463–472.

    Article  CAS  Google Scholar 

  23. Fan, H. T.; Sun, X. T.; Zhang, Z. G.; Li, W. X. Selective removal of lead(II) from aqueous solution by an ion-imprinted silica sorbent functionalized with chelating N-donoratoms. J. Chem. Eng. Data 2014, 59(6), 2106–2114.

    Article  CAS  Google Scholar 

  24. Li, Q.; Su, H.; Li, J.; Tan, T. Application of surface molecular imprinting adsorbent in expanded bedfor the adsorption of Ni2+ and adsorption model. J. Environ. Manage. 2007, 85(4), 900–907.

    Article  CAS  Google Scholar 

  25. Fan, H. T.; Li, J.; Li, Z. C.; Sun, T. An ion-imprinted amino-functionalized silica gel sorbent prepared by hydrothermal assisted surface imprinting technique for selective removal of cadmium(II) from aqueous solution. Appl. Surf. Sci. 2012, 258(8), 3815–3822.

    Article  CAS  Google Scholar 

  26. Hoai, N. T.; Yoo, N. K.; Kim, D. Batch and column separation characteristics of copper-imprinted porous polymer micro-beads synthesized by a direct imprinting method. J. Hazard Mater. 2010, 173(1-3), 462–467.

    Article  CAS  Google Scholar 

  27. Li, M.; Feng, C.; Li, M.; Zeng, Q.; Gan, Q. Synthesis and application of a surface-grafted In (III) ion-imprinted polymer for selective separation and pre-concentration of indium(III) ion from aqueous solution. Hydrometallurgy 2015, 154(1), 63–71.

    Article  CAS  Google Scholar 

  28. He, Q.; Chang, X.; Wu, Q.; Huang, X.; Hu, Z.; Zhai, Y. Synthesis and applications of surface-grafted Th(IV)-imprinted polymers for selective solid-phase extraction of thorium(IV). Anal. Chim. Acta 2007, 605(2), 192–197.

    Article  CAS  Google Scholar 

  29. Ge, Y.; Li, Y.; Zu, B.; Zhou, C.; Dou, X. AM-DMC-AMPS multi-functionalized magnetic nanoparticles for efficient purification of complex multiphase water system. Nanoscale Res. Lett. 2016, 11(1), 1–9.

    Article  CAS  Google Scholar 

  30. Chen, J. H.; Lin, H.; Luo, Z. H.; He, Y. S.; Li, G. P. Cu(II)-imprinted porous film adsorbent Cu-PVA-SA has high uptake capacity for removal of Cu(II) ions from aqueous solution. Desalination 2011, 277(1), 265–273.

    Article  CAS  Google Scholar 

  31. Yurdakoc, M.; Scki, Y.; Yuedakoc, S. K. Kinetic and thermodynamic studies of boron removal by Siral 5, Siral 40, and Siral 80. J. Colloid Interf. Sci. 2005, 286(2), 440–446.

    Article  CAS  Google Scholar 

  32. Abbasi, S.; Roushani, M.; Khani, H.; Sahraei, R.; Mansouri, G. Synthesis and application of ion-imprinted polymer nanoparticles for the determination of nickel ions. Spectrochim. Acta A 2015, 140(5), 534–543.

    Article  CAS  Google Scholar 

  33. Laatikainen, K.; Udomsap, D.; Siren, H.; Brisset, H.; Sainio, T.; Branger, C. Effect of template ion-ligand complex stoichiometry on selectivity of ion-imprinted polymers. Talanta 2015, 134, 538–545.

    Article  CAS  Google Scholar 

  34. Behbahani, M.; Taghizadeh, M.; Bagheri, A.; Hosseini, H.; Salarian, M.; Tootoonchi, A. A nanostructured ion-imprinted polymer for the selective extraction and preconcentration of ultra-trace quantities of nickel ions. Microchim. Acta 2012, 178(3-4), 429–437.

    Article  CAS  Google Scholar 

  35. Jazi, M. B.; Arshadi, M.; Amiri, M. J.; Gil, A. Kinetic and thermodynamic investigations of Pb(II) and Cd(II) adsorption on nanoscaleorgano-functionalized SiO2-Al2O3. J. Colloid Interf. Sci. 2014, 422(19), 16–24.

    Article  Google Scholar 

  36. Liu, B.; Wang, D.; Li, H.; Xu, Y.; Zhang, L. As(III) removal from aqueous solution using a-Fe2O3 impregnated chitosan beads with As(III) as imprinted ions. Desalination 2011, 272(1-3), 286–292.

    Article  CAS  Google Scholar 

  37. Meena A. K.; Kadirvelu K.; Mishra G. K.; Rajagopal C.; Nagar P. N. Adsorptive removal of heavy metals from aqueous solution by treated sawdust (Acacia arabica). J. Hazard Mater. 2008, 150(3), 604–611.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-Gen Feng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, HX., Gan, Q. & Feng, CG. An Ion-imprinted Silica Gel Polymer Prepared by Surface Imprinting Technique Combined with Aqueous Solution Polymerization for Selective Adsorption of Ni(II) from Aqueous Solution. Chin J Polym Sci 36, 462–471 (2018). https://doi.org/10.1007/s10118-018-2063-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-018-2063-5

Keywords

Navigation