Skip to main content
Log in

Response of bi-disperse polyelectrolyte brushes to external electric fields — A numerical self-consistent field theory study

  • Papers
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

The self-consistent field theory has been employed to numerically study the response of bi-disperse flexible polyelectrolyte (PE) brushes grafted on an electrode to electric fields generated by opposite surface charges on the PE-grafted electrode and a second parallel electrode. The numerical study reveals that, under a positive external electric field, the shorter and negatively charged PE chains are more responsive than the longer PE chains in terms of the relative changes in their respective brush heights. Whereas under a negative external electric field, the opposite was observed. The total electric force on the grafted PE chains was calculated and it was found that, under a positive external electric field, the magnitude of the total electric force acting on one shorter PE chain is larger than that on one longer PE chain, or vice versa. The underlying mechanism was unraveled through analyzing the total electric field across the two oppositely charged electrodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Napper, D.H., “Polymeric stabilization of colloidal dispersions”, Academic Press, London, 1983, Vol. 7

    Google Scholar 

  2. Halperin, A., Tirrell, M. and Lodge, T.P., Adv. Polym. Sci., 1991, 100: 31

    Google Scholar 

  3. Naji, A., Seidel, C. and Netz, R.R., Adv. Polym. Sci., 2006, 198: 149

    Article  CAS  Google Scholar 

  4. Borisov, O.V., Zhulina, E.B. and Birshtein, T.M., Maromolecules, 1994, 27: 4795

    Article  CAS  Google Scholar 

  5. Netz, R.R. and Andelman, D., Phys. Rep., 2003, 380(1-2): 1

    Article  CAS  Google Scholar 

  6. Naji, A., Netz, R.R. and Seidel, C., Eur. Phys. J. E, 2003, 12: 223

    Article  CAS  Google Scholar 

  7. Witte, K.N., Kim, S. and Won, Y.Y., J. Phys. Chem. B, 2009, 113: 11076

    Article  CAS  Google Scholar 

  8. Seidel, C., Macromolecules, 2003, 36: 2536

    Article  CAS  Google Scholar 

  9. Hehmeyer, O.J., Arya, G., Panagiotopoulos, A.Z. and Szleifer, I., J. Chem. Phys., 2007, 126: 244902

    Article  Google Scholar 

  10. Wynveen, A. and Likos, C.N., Phys. Rev. E, 2009, 80: 010801

    Article  Google Scholar 

  11. Linse, P., J. Chem. Phys., 2007, 126: 114903

    Article  Google Scholar 

  12. Russano, D., Carrillo, J.M.Y. and Dobrynin, A.V., Langmuir, 2011, 27: 11044

    Article  CAS  Google Scholar 

  13. Ou, Y.P., Sokoloff, J.B. and Stevens, M.J., Phys. Rev. E, 2012, 85: 011801

    Article  Google Scholar 

  14. He, S.Z., Merlitz, H., Chen, L., Sommer, J.U. and Wu, C.X., Macromolecules, 2010, 43: 7845

    Article  CAS  Google Scholar 

  15. Ibergay, C., Malfreyt, P. and Tildesley, D.J., J. Phys. Chem. B, 2010, 114: 7274

    Article  CAS  Google Scholar 

  16. Wu, J.M., Zhao. S., Gao. L., Wu, J.Z. and Gao, D., Lab Chip., 2011, 11: 4036

    Article  CAS  Google Scholar 

  17. Zhao, S., Wu, J.M., Gao, D. and Wu, J.Z., J. Chem. Phys., 2011, 134: 065103

    Article  Google Scholar 

  18. Wu, J.M., Zhao, S., Gao, L., Wu, J.Z. and Gao, D., J. Phys. Chem. B, 2013, 117: 2267

    Article  CAS  Google Scholar 

  19. Tsori, Y., Andelman, D. and Joanny, J.F., Europhys. Lett., 2008, 82: 46001

    Article  Google Scholar 

  20. Yamamoto, T. and Pincus, P.A., Europhys. Lett., 2011, 95: 48003

    Article  Google Scholar 

  21. Migliorini, G., Macromolecules, 2010, 43: 9168

    Article  CAS  Google Scholar 

  22. Cao, Q.Q., Zuo, C.C., Li, L.J. and Yan, G., Biomicrofluidics, 2011, 5: 044119

    Article  Google Scholar 

  23. Ouyang, H., Xia, Z.H. and Zhe, J., Nanotechnology, 2009, 20: 195703

    Article  Google Scholar 

  24. Ho, Y.F., Shendruk, T.N., Slater, G.W. and Hsiao, P.Y., Langmuir, 2013, 29: 2359

    Article  CAS  Google Scholar 

  25. Merlitz, H., Li, C., Wu, C.X. and Sommer, J.U., Soft Matter, 2015, 11: 5688

    Article  CAS  Google Scholar 

  26. Meng, D. and Wang, Q., J. Chem. Phys., 2011, 135: 224904

    Article  Google Scholar 

  27. Tong, C., J. Chem. Phys., 2015, 143: 054903

    Article  Google Scholar 

  28. Shi, A.C. and Noolandi, J., Macromol. Theory Simul., 1999, 8(3): 214

    Article  CAS  Google Scholar 

  29. Wang, Q., Taniguchi, T. and Fredrickson, G.H., J. Phys. Chem. B, 2004, 108: 6733

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao-hui Tong  (童朝晖).

Additional information

This work was financially supported by the National Natural Science Foundation of China (No. 21374052). C. T. acknowledges the support from K. C. Wong Magna Fund in Ningbo University.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, C., Zhao, Sl. & Tong, Ch. Response of bi-disperse polyelectrolyte brushes to external electric fields — A numerical self-consistent field theory study. Chin J Polym Sci 35, 98–107 (2017). https://doi.org/10.1007/s10118-017-1868-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-017-1868-y

Keywords

Navigation