Skip to main content
Log in

Biclustering-based multi-label classification

  • Regular Paper
  • Published:
Knowledge and Information Systems Aims and scope Submit manuscript

Abstract

In multi-label classification, data can have multiple labels simultaneously. Two approaches to this issue are either transforming the multi-label data or adapting single-label algorithms for multi-label data. Despite the problem transformation’s effectiveness, some algorithms use fixed parameters to determine the number of subproblems, and the label relationships maintenance is done without using correlation or co-occurrence measures. In this work, the approach that converts multi-label problems into multiple binary subproblems was chosen because this offers a low execution time, enabling the use of complex single-label algorithms during classification. However, it has low performance in multi-label metrics. Thus, the BicbPT algorithm is introduced, which uses the biclustering technique combined with the multi-label to binary problem transformation to improve performance in multi-label metrics without increasing this transformation’s running time. For the evaluation, comparisons were made with the algorithms BR, CC, ECC, RAkEL and LP. Single-label algorithms SVM, C4.5 and Naive Bayes were applied to classify the binary subproblems across 12 datasets. The experiments demonstrate that BicbPT performed better in the multi-label metrics than the other multi-label to binary algorithms, being similar only to ECC. Still, the running time is up to 10 times higher in ECC, which makes the BicbPT better. Also, it keeps running time similar to algorithms in the multi-label to binary category. Finally, during the experiments, it was possible to perceive that the way the labels influence each other allow to improve the multi-label classification and not only consider maintaining the relationships like other approaches do.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Algorithm 1
Fig. 7
Algorithm 2
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Notes

  1. https://mulan.sourceforge.net.

  2. https://waikato.github.io/meka.

  3. https://anonymous.4open.science/r/bicbpt-027E/.

  4. https://cran.r-project.org/ packages package=biclust.

  5. https://cran.r-project.org/package=rJava.

  6. https://scikit-learn.org.

References

  1. Witten IH, Frank E, Hall MA, Pal CJ (2011) Data mining: practical machine learning tools and techniques, 3rd edn. Elsevier, https://doi.org/10.1016/C2009-0-19715-5

  2. Lai C-C, Tsai M-C (2004) An empirical performance comparison of machine learning methods for spam e-mail categorization. In: Fourth International Conference on Hybrid Intelligent Systems (HIS’04), pp. 44–48. https://doi.org/10.1109/ICHIS.2004.21

  3. Bulbul HI, Unsal O (2011) Comparison of classification techniques used in machine learning as applied on vocational guidance data. In: 2011 10th International Conference on Machine Learning and Applications and Workshops, 2, 298–301. https://doi.org/10.1109/ICMLA.2011.49

  4. Ubik S, Žejdl P (2010) Evaluating application-layer classification using a machine learning technique over different high speed networks. In: 2010 Fifth International Conference on Systems and Networks Communications, pp. 387–391. https://doi.org/10.1109/ICSNC.2010.66

  5. Zhan Y, Chen H, Zhang S-F, Zheng M (2009) Chinese text categorization study based on feature weight learning. In: 2009 International Conference on Machine Learning and Cybernetics, 3, 1723–1726. https://doi.org/10.1109/ICMLC.2009.5212257

  6. Kashef S, Nezamabadi-pour H, Nikpour B (2018) Multilabel feature selection: a comprehensive review and guiding experiments. WIREs Data Min Knowl Discov. https://doi.org/10.1002/widm.1240

    Article  Google Scholar 

  7. Zhang M-L, Zhou Z-H (2014) A review on multi-label learning algorithms. IEEE Trans Knowl Data Eng 26(8):1819–1837. https://doi.org/10.1109/TKDE.2013.39

    Article  Google Scholar 

  8. Dembczyński K, Waegeman W, Cheng W, Hüllermeier E (2012) On label dependence and loss minimization in multi-label classification. Mach Learn 88(1):5–45. https://doi.org/10.1007/s10994-012-5285-8

    Article  MathSciNet  Google Scholar 

  9. Cherman EA, Monard MC, Metz J (2011) Multi-label Problem Transformation Methods: a Case Study. CLEI Electronic Journal 14:4–4, http://www.scielo.edu.uy/scielo.php?script=sci_arttext &pid=S0717-50002011000100005 &nrm=iso

  10. Tsoumakas G, Katakis I (2007) Multi-label classification. Int J Data Warehous Min 3:1–13. https://doi.org/10.4018/jdwm.2007070101

    Article  Google Scholar 

  11. Gibaja E, Ventura S (2015) A tutorial on multilabel learning 47(3). https://doi.org/10.1145/2716262

  12. Read J, Pfahringer B, Holmes G, Frank E (2011) Classifier chains for multi-label classification. Mach Learn 85:333–359. https://doi.org/10.1007/s10994-011-5256-5

    Article  MathSciNet  Google Scholar 

  13. Tsoumakas G, Katakis I, Vlahavas I (2010) Mining Multi-label Data, pp. 667–685. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-09823-4_34

  14. Madjarov G, Kocev D, Gjorgjevikj D, Džeroski S (2012) An extensive experimental comparison of methods for multi-label learning. Pattern Recognit 45(9):3084–3104. https://doi.org/10.1016/j.patcog.2012.03.004

    Article  Google Scholar 

  15. Gibaja E, Ventura S (2014) Multi-label learning: a review of the state of the art and ongoing research. WIREs Data Min Knowl Discov 4(6):411–444. https://doi.org/10.1002/widm.1139

    Article  Google Scholar 

  16. Chen W, Yan J, Zhang B, Chen Z, Yang Q (2007) Document transformation for multi-label feature selection in text categorization. In: Seventh IEEE International Conference on Data Mining (ICDM 2007), pp. 451–456. https://doi.org/10.1109/ICDM.2007.18

  17. Madeira SC, Oliveira AL (2004) Biclustering algorithms for biological data analysis: a survey. IEEE/ACM Trans Comput Biol Bioinf 1(1):24–45. https://doi.org/10.1109/TCBB.2004.2

    Article  Google Scholar 

  18. Bergmann S, Ihmels J, Barkai N (2003) Iterative signature algorithm for the analysis of large-scale gene expression data. Phys Rev E 67:031902. https://doi.org/10.1103/PhysRevE.67.031902

    Article  Google Scholar 

  19. Prelić A, Bleuler S, Zimmermann P, Wille A, Bühlmann P, Gruissem W, Hennig L, Thiele L, Zitzler E (2006) A systematic comparison and evaluation of biclustering methods for gene expression data. Bioinformatics 22(9):1122–1129. https://doi.org/10.1093/bioinformatics/btl060

    Article  Google Scholar 

  20. Lazzeroni L, Owen A (2002) Plaid models for gene expression data. Statistica Sinica 12(1):61–86, http://www.jstor.org/stable/24307036. Accessed 2023-06-15

  21. Pontes B, Giráldez R, Aguilar-Ruiz JS (2015) Biclustering on expression data: a review. J Biomed Inf 57:163–180. https://doi.org/10.1016/j.jbi.2015.06.028

    Article  Google Scholar 

  22. Cheng Y, Church GM (2000) Biclustering of expression data. In: Proceedings of the Eighth International Conference on Intelligent Systems for Molecular Biology 8:93–103, https://pubmed.ncbi.nlm.nih.gov/10977070/

  23. Murali TM, Kasif S (2003) Extracting conserved gene expression motifs from gene expression data. Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing 8:77–88, http://www.ncbi.nlm.nih.gov/pubmed/12603019

  24. Tanay A, Sharan R, Shamir R (2002) Discovering statistically significant biclusters in gene expression data. Bioinformatics 18:136–144. https://doi.org/10.1093/bioinformatics/18.suppl_1.S136

    Article  Google Scholar 

  25. Lotf H, Ramdani M (2020) Multi-label classification: A novel approach using decision trees for learning label-relations and preventing cyclical dependencies: Relations recognition and removing cycles (3rc). Association for Computing Machinery, New York, NY, USA.https://doi.org/10.1145/3419604.3419763

  26. Wever M, Tornede A, Mohr F, Hüllermeier E (2020) Libre: Label-wise selection of base learners in binary relevance for multi-label classification. In: Advances in Intelligent Data Analysis XVIII, pp. 561–573. Springer. https://doi.org/10.1007/978-3-030-44584-3_44

  27. Sun L, Kudo M (2019) Multi-label classification by polytree-augmented classifier chains with label-dependent features. Pattern Anal Appl 22:1029–1049. https://doi.org/10.1007/s10044-018-0711-6

    Article  MathSciNet  Google Scholar 

  28. Soonsiripanichkul B, Murata T (2016) Domination dependency analysis of sales marketing based on multi-label classification using label ordering and cycle chain classification. In: 2016 5th IIAI International Congress on Advanced Applied Informatics (IIAI-AAI), pp. 1048–1053. https://doi.org/10.1109/IIAI-AAI.2016.61

  29. Glinka K, Zakrzewska D (2016) Effective multi-label classification method for multidimensional datasets. In: Flexible Query Answering Systems 2015, pp. 127–138. Springer. https://doi.org/10.1007/978-3-319-26154-6_10

  30. Zhang J-J, Fang M, Li X (2015) Multi-label learning with discriminative features for each label. Neurocomputing 154:305–316. https://doi.org/10.1016/j.neucom.2014.11.062

    Article  Google Scholar 

  31. Gjorgjevikj D, Madjarov G (2011) Two stage classifier chain architecture for efficient pair-wise multi-label learning. In: 2011 IEEE International Workshop on Machine Learning for Signal Processing, pp. 1–6. https://doi.org/10.1109/MLSP.2011.6064599

  32. Madjarov G, Gjorgjevikj D, Džeroski S (2012) Two stage architecture for multi-label learning. Pattern Recogn 45(3):1019–1034. https://doi.org/10.1016/j.patcog.2011.08.011

    Article  Google Scholar 

  33. Zhang M-L, Li Y-K, Liu X-Y, Geng X (2018) Binary relevance for multi-label learning: an overview. Front Comp Sci 12:191–202. https://doi.org/10.1007/s11704-017-7031-7

    Article  Google Scholar 

  34. Tsoumakas G, Spyromitros-Xioufis E, Vilcek J, Vlahavas I (2011) Mulan: a java library for multi-label learning. J Mach Learn Res 12(71):2411–2414

    MathSciNet  Google Scholar 

  35. Curi Z, de Souza Britto Jr, A, Paraiso EC (2018) Multi-label classification of user reactions in online news. CoRR. arXiv:1809.02811

  36. Curi Z, de Souza Britto Jr, A, Paraiso EC (2019) Using correlation for labelset selection in multi-label classification of users reactions. In: Proceedings of the Thirty-Second International Florida Artificial Intelligence Research Society Conference, Sarasota, Florida, USA, May 19-22 2019, pp. 167–172. AAAI Press. https://aaai.org/ocs/index.php/FLAIRS/FLAIRS19/paper/view/18297

  37. Dosciatti M, Ferreira L, Paraiso EC (2015) Anotando um corpus de notícias para a análise de sentimentos: um relato de experiência (annotating a corpus of news for sentiment analysis: An experience report). In: Proceedings of the 10th Brazilian Symposium in Information and Human Language Technology, STIL 2015, Natal, Brazil, November 4-7, 2015, pp. 121–130. Sociedade Brasileira de Computação. https://aclanthology.org/W15-5616/

  38. Dietterich TG (1998) Approximate statistical tests for comparing supervised classification learning algorithms. Neural Comput 10(7):1895–1923. https://doi.org/10.1162/089976698300017197

    Article  Google Scholar 

  39. Read J, Reutemann P, Pfahringer B, Holmes G (2016) Meka: A multi-label/multi-target extension to weka. J Mach Learn Res 17(21):1–5

    MathSciNet  Google Scholar 

  40. Demšar J (2006) Statistical comparisons of classifiers over multiple data sets. J Mach Learn Res 7:1–30. https://doi.org/10.5555/1248547.1248548

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors made substantial contributions to the conception of the work. S.L.R wrote the initial manuscript. P. E.C. and N.J.C. contributed to the revisions. All authors approved the final version submitted for publication.

Corresponding author

Correspondence to Luiz Rafael Schmitke.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schmitke, L.R., Paraiso, E.C. & Nievola, J.C. Biclustering-based multi-label classification. Knowl Inf Syst (2024). https://doi.org/10.1007/s10115-024-02109-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10115-024-02109-3

Keywords

Navigation