Skip to main content

Predictive Bi-clustering Trees for Hierarchical Multi-label Classification

  • Conference paper
  • First Online:
Machine Learning and Knowledge Discovery in Databases (ECML PKDD 2020)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12459))

Abstract

In the recent literature on multi-label classification, a lot of attention is given to methods that exploit label dependencies. Most of these methods assume that the dependencies are static over the entire instance space. In contrast, here we present an approach that dynamically adapts the label partitions in a multi-label decision tree learning context. In particular, we adapt the recently introduced predictive bi-clustering tree (PBCT) method towards multi-label classification tasks. This way, tree nodes can split the instance-label matrix both in a horizontal and a vertical way. We focus on hierarchical multi-label classification (HMC) tasks, and map the label hierarchy to a feature set over the label space. This feature set is exploited to infer vertical splits, which are regulated by a lookahead strategy in the tree building procedure. We evaluate our proposed method using benchmark datasets. Experiments demonstrate that our proposal (PBCT-HMC) obtained better or competitive results in comparison to its direct competitors, both in terms of predictive performance and model size. Compared to an HMC method that does not produce label partitions though, our method results in larger models on average, while still producing equally large or smaller models in one third of the datasets by creating suitable label partitions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://dtai.cs.kuleuven.be/clus/.

  2. 2.

    In our implementation, we consider a greedy generation of the subsets.

  3. 3.

    Available at https://dtai.cs.kuleuven.be/clus/hmc-ens/.

  4. 4.

    Available at https://dtai.cs.kuleuven.be/clus/hmcdatasets/.

  5. 5.

    Available at https://itec.kuleuven-kulak.be/supportingmaterial.

  6. 6.

    Available at http://kt.ijs.si/DragiKocev/PhD/resources/doku.php.

  7. 7.

    Available at https://dtai.cs.kuleuven.be/clus.

  8. 8.

    Available at https://github.com/biomal/Clus-PBCT-HMC.

References

  1. Tsoumakas, G., Katakis, I.: Multi-label classification: an overview. Int. J. Data Warehouse. Min. (IJDWM) 3(3), 1–13 (2007)

    Article  Google Scholar 

  2. Blockeel, H., Raedt, L.D., Ramon, J.: Top-down induction of clustering trees. In: Proceedings of the Fifteenth International Conference on Machine Learning, ICML 1998, pp. 55–63 (1998)

    Google Scholar 

  3. Papagiannopoulou, C., Tsoumakas, G., Tsamardinos, I.: Discovering and exploiting deterministic label relationships in multi-label learning. In: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 915–924. Association for Computing Machinery (2015)

    Google Scholar 

  4. Madjarov, G., Gjorgjevikj, D., Dimitrovski, I., Džeroski, S.: The use of data-derived label hierarchies in multi-label classification. J. Intell. Inf. Syst. 47(1), 57–90 (2016)

    Article  Google Scholar 

  5. Szymanski, P., Kajdanowicz, T., Kersting, K.: How is a data-driven approach better than random choice in label space division for multi-label classification? CoRR (2016)

    Google Scholar 

  6. Joly, A., Geurts, P., Wehenkel, L.: Random forests with random projections of the output space for high dimensional multi-label classification. In: Machine Learning and Knowledge Discovery in Databases, pp. 607–622 (2014)

    Google Scholar 

  7. Breskvar, M., Kocev, D., Džeroski, S.: Multi-label classification using random label subset selections. In: Discovery Science (2017)

    Google Scholar 

  8. Breskvar, M., Kocev, D., Džeroski, S.: Ensembles for multi-target regression with random output selections. Mach. Learn. 107(11), 1673–1709 (2018). https://doi.org/10.1007/s10994-018-5744-y

    Article  MathSciNet  MATH  Google Scholar 

  9. Prati, R.C., de França, F.O.: Extending features for multilabel classification with swarm biclustering. In: IEEE Congress on Evolutionary Computation, pp. 2964–2971 (2013)

    Google Scholar 

  10. de Abreu, I.B.M., Mantovani, R.G., Cerri, R.: Incorporating instance correlations in multi-label classification via label-space. In: International Joint Conference on Neural Networks (IJCNN), pp. 581–588 (2017)

    Google Scholar 

  11. Feng, L., An, B., He, S.: Collaboration based multi-label learning. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 3550–3557 (2019)

    Google Scholar 

  12. Pliakos, K., Geurts, P., Vens, C.: Global multi-output decision trees forinteraction prediction. Mach. Learn. 107(8), 1257–1281 (2018). https://doi.org/10.1007/s10994-018-5700-x

    Article  MathSciNet  MATH  Google Scholar 

  13. Elomaa, T., Malinen, T.: On lookahead heuristics in decision tree learning. In: Zhong, N., Raś, Z.W., Tsumoto, S., Suzuki, E. (eds.) ISMIS 2003. LNCS (LNAI), vol. 2871, pp. 445–453. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-39592-8_63

    Chapter  Google Scholar 

  14. Vens, C., Struyf, J., Schietgat, L., Džeroski, S., Blockeel, H.: Decision trees for hierarchical multi-label classification. Mach. Learn. 73(2), 185 (2008)

    Article  Google Scholar 

  15. Pliakos, K., Vens, C., Tsoumakas, G.: Predicting drug-target interactions with multi-label classification and label partitioning. In: IEEE-ACM Transactions On Computational Biology And Bioinformatics, pp. 1–11 (2019)

    Google Scholar 

  16. Schietgat, L., Vens, C., Struyf, J., Blockeel, H., Kocev, D., Dzeroski, S.: Predicting gene function using hierarchical multi-label decision tree ensembles. BMC Bioinf. 11, 2 (2010)

    Article  Google Scholar 

  17. Cerri, R., Barros, R.C., de Carvalho, A.C., Jin, Y.: Reduction strategies for hierarchical multi-label classification in protein function prediction. BMC Bioinform. 17(1), 373 (2016) https://doi.org/10.1186/s12859-016-1232-1

  18. Wehrmann, J., Cerri, R., Barros, R.: Hierarchical multi-label classification networks. In: Proceedings of the 35th International Conference on Machine Learning, vol. 80, pp. 5075–5084 (2018)

    Google Scholar 

  19. Masera, L., Blanzieri, E.: Awx: an integrated approach to hierarchical-multilabel classification. In: Machine Learning and Knowledge Discovery in Databases, pp. 322–336 (2019)

    Google Scholar 

  20. Tsoumakas, G., Katakis, I., Vlahavas, I.: Random k-labelsets for multi-label classification. IEEE Trans. Knowl. Data Eng. 23 1079–1089 (2011)

    Google Scholar 

  21. Moyano, J., Gibaja, E., Cios, K., Ventura, S.: Combining multi-labelclassifiers based on projections of the output space using evolutionary algorithms. Knowl.-Based Syst. 196, 105770 (2020)

    Article  Google Scholar 

  22. Ruepp, A, Zollner, A.M.D.: The funcat, a functional annotation scheme for systematic classification of proteins from whole genomes. Nucleic Acids Res. 32(18), 5539–5545 (2004)

    Google Scholar 

  23. Nakano, F.K., Lietaert, M., Vens, C.: Machine learning for discovering missing or wrong protein function annotations. BMC Bioinf. 20(1), 485 (2019)

    Article  Google Scholar 

  24. Dimitrovski. I., Kocev, D., Loskovska, S., Džeroski, S.: Hierchical annotation of medical images. In: Proceedings of the 11th International Multiconference - Information Society IS 200. IJS, Ljubljana, pp. 174–181 (2008)

    Google Scholar 

  25. Dimitrovski, I., Kocev, D., Loskovska, S., Džeroski, S.: Hierarchical classification of diatom images using ensembles of predictive clustering trees. Ecol. Inf. 7(1), 19–29 (2012)

    Article  Google Scholar 

  26. Klimt, B., Yang, Y.: The Enron corpus: a new dataset for email classification research. In: Boulicaut, J.-F., Esposito, F., Giannotti, F., Pedreschi, D. (eds.) ECML 2004. LNCS (LNAI), vol. 3201, pp. 217–226. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30115-8_22

    Chapter  Google Scholar 

  27. Demšar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 7, 1–30 (2006)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

We acknowledge Sao Paulo Research Foundation (FAPESP grants #2017/13218-5 and #2016/25078-0) and Research Fund Flanders (FWO) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruna Z. Santos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Santos, B.Z., Nakano, F.K., Cerri, R., Vens, C. (2021). Predictive Bi-clustering Trees for Hierarchical Multi-label Classification. In: Hutter, F., Kersting, K., Lijffijt, J., Valera, I. (eds) Machine Learning and Knowledge Discovery in Databases. ECML PKDD 2020. Lecture Notes in Computer Science(), vol 12459. Springer, Cham. https://doi.org/10.1007/978-3-030-67664-3_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-67664-3_42

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-67663-6

  • Online ISBN: 978-3-030-67664-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics