Skip to main content

Advertisement

Log in

Integrated hydro- and wind power generation: a game changer towards environmental flow in the Sub-middle and Lower São Francisco River Basin?

  • Original Article
  • Published:
Regional Environmental Change Aims and scope Submit manuscript

Abstract

Many renewable resources for the generation of electricity, such as hydropower and wind power, are dependent on climatic factors. Reservoirs have been created to overcome the stochastic nature of river flows and to make water supply more reliable. However, reservoirs are affecting the ecological status of river ecosystems, e.g., by modifying the flow regime, triggering discussions regarding the discharge of reservoirs. In Brazil’s northeast region, the installed capacity for wind power generation has increased substantially in recent years. Setting up a modeling system for simulating wind power and hydropower generation in this study, it is analyzed whether wind power generation, peaking in the dry season, can help to achieve a more environmentally oriented flow regime in the Sub-middle and Lower São Francisco River Basin. Simulated higher discharges from reservoirs during the rainy season and lower discharges during the dry season, representing a more natural flow regime, will reduce hydropower generation in the dry season. Under recent conditions, the resulting gap in electricity generation can only be partially covered by wind power. A large share needs to be generated by thermal power plants or be imported from other regions in Brazil. The planned future increase in installed wind power capacity can change this picture; the demand for electricity generated by thermal power plants and imported will decrease. Adopting an integrated approach for hydropower and wind power generation, the flow regime in the Sub-middle and Lower São Francisco River Basin can be modified to improve the ecological status of the river system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Akdag SA, Güler O (2011) A comparison of wind turbine power curve models. Energy Sources Part A Recover Util Environ Eff 33:2257–2263. https://doi.org/10.1080/15567036.2011.594861

    Article  Google Scholar 

  • ANA/GEF/PNUMA/OEA—Agência Nacional de Águas/Global Environment Facility/Programa das Nações Unidas para o Meio Ambiente/Organização dos Estados Americanos (2004) Projeto de Gerenciamento Integrado das Atividades Desenvolvidas em Terra na Bacia do São Francisco. Estudo Técnico de Apoio ao PBHSF N° 09—Aproveitamento do Potencial Hidráulico para geração de energia elétrica. Brasília-DF

  • ANA/MMA (2013) Conjuntura Recursos Hidricos Brasil. Agência Nacional de Águas/Ministério do Meio Ambiente, Brasília

    Google Scholar 

  • Anderson EP, Freeman MC, Pringle CM (2006) Ecological consequences of hydropower development in Central America: impacts of small dams and water diversion on neotropical stream fish assemblages. River Res Appl 22:397–411. https://doi.org/10.1002/rra.899

    Article  Google Scholar 

  • ANEEL (2016) Capacidade de Geração do Brasil. Agência Nacional de Energia Elétrica—ANEEL (available at: http://www2.aneel.gov.br/aplicacoes/capacidadebrasil/capacidadebrasil.cfm).

  • Angarita JL, Usaola J, Martinez-Crespo J (2009) Combined hydro-wind generation bids in a pool-based electricity market. Electr Power Syst Res 79(7):1038–1046. https://doi.org/10.1016/j.epsr.2009.01.002

    Article  Google Scholar 

  • Arthington AH, Bunn SE, Poff NL, Naiman RJ (2006) The challenge of providing environmental flow rules to sustain river ecosystems. Ecol Appl 16:1311–1318

    Article  Google Scholar 

  • Barbosa LSNS, Bogdanov D, Vainikka P, Breyer C (2017) Hydro, wind and solar power as a base for a 100% renewable energy supply for South and Central America. PLoS One 12(3):e0173820. https://doi.org/10.1371/journal.pone.0173820

    Article  CAS  Google Scholar 

  • Belanger C, Gagnon L (2002) Adding wind energy to hydropower. Energy Policy 30:1279–1284. https://doi.org/10.1016/S0301-4215(02)00089-7

    Article  Google Scholar 

  • Benitez L, Benitez P, van Kooten GC (2008) The economics of wind power with energy storage. Energy Econ 30:1973–1989. https://doi.org/10.1016/j.eneco.2007.01.017

    Article  Google Scholar 

  • Bergkamp G, McCartney M, Dugan P, McNeely J, Acreman M (2000) Dams, ecosystem functions and environmental restoration. Thematic review II.1 prepared as an input to the World Commission on Dams, Cape Town, 186p

  • Bhandari B, Poudel SR, Lee K-T, Ahn S-H (2014) Mathematical modeling of hybrid renewable energy system: a review on small hydro-solar-wind power generation. Int J Precis Eng Manuf Green Technol 1(2):157–173. https://doi.org/10.1007/s40684-014-0021-4

    Article  Google Scholar 

  • Bueno C, Carta JA (2006) Wind powered pumped hydro storage systems, a means of increasing the penetration of renewable energy in the Canary Islands. Renew Sust Energ Rev 10:312–340. https://doi.org/10.1016/j.rser.2004.09.005

    Article  Google Scholar 

  • Bulling L, Köppel J (2016) Exploring the trade-offs between wind energy and biodiversity conservation. In: Geneletti D (ed) Handbook on biodiversity and ecosystem services in impact assessment. Edward Elgar Publishing, Cheltenham, pp 299–320

    Chapter  Google Scholar 

  • Calabria FA, Saraiva JT, Glachant J-M (2014) Enhancing flexibility and ensuring efficiency and security: improving the electricity market in Brazil via a virtual reservoir model. EUI Working Paper RSCAS 2014/85, Badia Fiesolana—European University Institute. 25p

  • Castronuovo ED, Usaola J, Bessa R, Matos MA, Costa IC, Bremermann L, Lugaro J, Kariniotakis G (2014) An integrated approach for optimal coordination of wind power and hydro pumping storage. Wind Energy 17(6):829–852. https://doi.org/10.1002/we.1600

    Article  Google Scholar 

  • CBHSF (2004) Plano Decenal de Recursos Hídricos da Bacia Hidrográfica do Rio São Francisco—Resumo Executivo. Comitê da Bacia Hidrográfica do Rio São Francisco, Salvador, 337p

    Google Scholar 

  • CEPEL 2005 Brazil wind data (10km)—annual average of the aeolic potential at 50m. Electric Energy Research Center/Federal University of Rio de Janeiro, Brazil. Available at http://www.cepel.br.

  • Coops H, Beklioglu M, Crisman TL (2003) The role of water-level fluctuation in shallow lake ecosystems-workshop conclusions. Hydrobiologia 506-509:23–27

    Article  Google Scholar 

  • de Jong P, Kiperstok A, Sánchez AS, Dargaville R, Torres EA (2016) Integrating large scale wind power into the electricity grid in the northeast of Brazil. Energy 100:401–415. https://doi.org/10.1016/j.energy.2015.12.026

    Article  Google Scholar 

  • de Sena LA, Ferreira P, Braga AC (2016) Social acceptance of wind and solar power in the Brazilian electricity system. Environ Dev Sustain 18:1457–1476. https://doi.org/10.1007/s10668-016-9772-0

    Article  Google Scholar 

  • Dutra RM, Szklo AS (2008) Hydro-wind power complementarity: a way to implementing wind power in Brazil. Proceedings World Renewable Energy Congress, 19–25 July 2008, Glasgow, Scotland pp 2344–2349

  • Fearnside PM (2002) Greenhouse gas emissions from hydroelectric reservoirs (Brazil’s Tucuruí dam) and the energy policy implications. Water Air Soil Pollut 133:69–96. https://doi.org/10.1023/A:1012971715668

    Article  CAS  Google Scholar 

  • Ferreira TVB (2014) Hidrogramas ambientais para o Baixo Rio São Francisco: avaliação de impactos sobre a geração hidrelétrica. Master Thesis, Rio de Janeiro: UFRJ/COPPE. 304p

  • François B, Martino S, Tøfte LS, Hingray B, Mo B, Creutin J-D (2017) Effects of increased wind powergeneration on Mid-Norway’s energy balance under Climate Change: A market based approach. Energies10-227. https://doi.org/10.3390/en10020227

  • Gartman V, Wichmann K, Bulling L, Huesca-Pérez ME, Köppel J (2014) Wind of change or wind of challenges: implementation factors regarding wind energy development, an international perspective. AIMS Energy 2:485–504. https://doi.org/10.3934/energy.2014.4.485

    Article  Google Scholar 

  • Gartman V, Bulling L, Dahmen M, Geissler G, Köppel J (2016a) Mitigation measures for wildlife in wind energy development, consolidating the state of knowledge—part 1: planning and siting, construction. J Environ Assess Policy Manag 18:1650013–1–45. https://doi.org/10.1142/S1464333216500137

    Article  Google Scholar 

  • Gartman V, Bulling L, Dahmen M, Geissler G, Köppel J (2016b) Mitigation measures for wildlife in wind energy development, consolidating the state of knowledge—part 2: operation, decommissioning. J Environ Assess Policy Manag 18:1650014–1–31. https://doi.org/10.1142/S1464333216500149

    Article  Google Scholar 

  • Gartman V, Schuster E, Köppel J, Perrow MR (2017) A best approach to future planning. In: Perrow MR (ed) Wildlife and wind farms, conflicts and solutions. Vol. 2 onshore: monitoring and mitigation. Pelagic Publishing, Exeter, pp 185–208

    Google Scholar 

  • Gebretsadik Y, Fant C, Strzepek K, Arndt C (2016) Optimized reservoir operation model of regional wind and hydro power integration case study: Zambezi basin and South Africa. Appl Energy 161:574–582. https://doi.org/10.1016/j.apenergy.2015.09.077

    Article  Google Scholar 

  • Hirsch PE, Schillinger S, Weigt H, Burkhardt-Holm P (2014) Hydro-economic model for water level fluctuations: combining limnology with economics for sustainable development of hydropower. PLoS One 9(12):e114889. https://doi.org/10.1371/journal.pone.0114889

    Article  CAS  Google Scholar 

  • Hofmann H, Lorke A, Peeters F (2008) Temporal scales of water-level fluctuations in lakes and their ecological implications. Hydrobiologia 613:85–96. https://doi.org/10.1007/s10750-008-9474-1

    Article  CAS  Google Scholar 

  • Hoogwijk M, De Vries B, Turkenburg W (2004) Assessment of the global and regional geographical, technical and economic potential of onshore wind energy. Energy Econ 26:889–919. https://doi.org/10.1016/j.eneco.2004.04.016

    Article  Google Scholar 

  • Huesca-Pérez ME, Sheinbaum-Pardo C, Köppel J (2016) Social implications of siting wind energy in a disadvantaged region—the case of the isthmus of Tehuantepec, Mexico. Renew Sust Energ Rev 58:952–965. https://doi.org/10.1016/j.rser.2015.12.310

    Article  Google Scholar 

  • INPE (2016) Dados históricos. Instituto Nacional de Pesquisas Espaciais. http://www.cptec.inpe.br/.

  • Jaramillo OA, Borja MA, Huacuz JM (2004) Using hydropower to complement wind energy: a hybrid system to provide firm power. Renew Energy 29:1887–1909. https://doi.org/10.1016/j.renene.2004.02.010

    Article  Google Scholar 

  • Kaldellis JK, Kavadias K, Christinakis E (2001) Evaluation of the wind-hydro energy solution for remote islands. Energy Convers Manag 42:1105–1120

    Article  Google Scholar 

  • King JM, Tharme RE, de Villiers MS (2008) Environmental flow assessments for rivers: manual for the Building Block Methodology. Report to the Water Research Commission WRC Report No TT 354/08

  • Koch H, Liersch S, Hattermann FF (2013) Integrating water resources management in eco-hydrological modelling. Water Sci Technol 67:1525–1533. https://doi.org/10.2166/wst.2013.022

    Article  CAS  Google Scholar 

  • Koch H, Vögele S, Hattermann FF, Huang S (2015) The impact of climate change and variability on the generation of electrical power. Meteorol Z 24:173–188. https://doi.org/10.1127/metz/2015/0530

    Article  Google Scholar 

  • Köppel J (ed) (2017) Wind energy and wildlife interactions. Presentations from the CWW2015 Conference. Springer International Publishing, Cham, p 289. https://doi.org/10.1007/978-3-319-51272-3

    Book  Google Scholar 

  • Köppel J, Dahmen M, Helfrich J, Schuster E, Bulling L (2012) Cautious but committed: moving toward adaptive planning and operation strategies for renewable energy’s wildlife implications. Environ Manag 54:744–755. https://doi.org/10.1007/s00267-014-0333-8

    Article  Google Scholar 

  • Krysanova V, Müller-Wohlfeil D, Becker A (1998) Development and test of a spatially distributed hydrological/water quality model for mesoscale watersheds. Ecol Model 106:261–289. https://doi.org/10.1016/S0304-3800(97)00204-4

    Article  CAS  Google Scholar 

  • Marinho MHDN, Aquino RRBD (2007) Complementariedade Sazonal Hidro-Eólica para Oferta de Energia Elétrica. XVII Simpósio Brasileiro de Recursos Hídricos; São Paulo 2007. 17p

  • Martinez M, Molina MG, Mercado PE (2015) Optimal storage technology selection and sizing for providing reserve to power systems with high penetration of wind generation. IEEE Lat Am Trans 13(9):2983–2990

    Article  Google Scholar 

  • Medeiros YDP, Freitas IMP, Stifelman GM, Freire RR, O’Keeffe J (2013) Social participation in the environmental flow assessment: the São Francisco River case study. Gesta—Revista Eletrônica de Gestão e Tecnologias Ambientais 1:122–130

    Article  Google Scholar 

  • Melo ECS, Aragão MRS, Correia MF (2013) Regimes do vento à superfície na área de Petrolina, Submédio São Francisco. Rev Brasileira Meteorol 28:229–241

    Google Scholar 

  • MME (2009) Plano Decenal de Expansão de Energia 2008/2017. MME—Ministério de Minas e Energia, Rio de Janeiro 435p

    Google Scholar 

  • MME (2012) Boletim Mensal de Monitoramento do Sistema Elétrico Brasileiro—Janeiro/2012. Ministério de Minas e Energia—Secretaria de Energia Elétrica—Departamento de Monitoramento do Sistema Elétrico

  • MME (2015a) Plano Decenal de Expansão de Energia 2024. MME—Ministério de Minas e Energia, Brasília, 467p

    Google Scholar 

  • MME (2015b) Projeção da demanda de energia elétrica para os próximos 5 anos (2016-2020). NOTA TÉCNICA DEA 19/15. MME—Ministério de Minas e Energia, Rio de Janeiro 88p

    Google Scholar 

  • Oliveira LW, Maria TCJ (2017) Planning of renewable generation in distribution systems considering daily operating periods. IEEE Lat Am Trans 15(5):901–907

    Article  Google Scholar 

  • ONS (2016a) Histórico da Operação. Operador Nacional do Sistema Elétrico—ONS. http://www.ons.org.br/home/index.aspx

  • ONS (2016b) Geração Eólica Verificada no Subsistema Nordeste 2015—NT 0024/2016. Operador Nacional do Sistema Elétrico—ONS, Rio de Janeiro

    Google Scholar 

  • ONS (2016c) Inventário de Dados Técnicos de Aproveitamentos Hidroelétricos. Operador Nacional do Sistema Elétrico—ONS. http://www.ons.org.br/operacao/hidrologia.aspx

  • ONS (2016d) Diretrizes para as regras de operação de controle de cheias—Bacia do rio São Francisco (ciclo 2015-2016). REL 3/144/2015. Operador Nacional do Sistema Elétrico—ONS, Rio de Janeiro

    Google Scholar 

  • ONS (2016e) Inventário Das Restrições Operativas Hidráulicas Dos Aproveitamentos Hidrelétricos. ONS DPP-REL—0046/2016. Operador Nacional do Sistema Elétrico, Rio de Janeiro

    Google Scholar 

  • Porse EC, Sandoval-Solis S, Lane BA (2015) Integrating environmental flows into multi-objective reservoir management for a transboundary, water-scarce river basin: Rio Grande/Bravo. Water Resour Manag 29:2471–2484. https://doi.org/10.1007/s11269-015-0952-8

    Article  Google Scholar 

  • Richter BD, Thomas GA (2007) Restoring environmental flows by modifying dam operations. Ecology and Society 12:12

    Article  Google Scholar 

  • Richter BD, Baumgartner JV, Powell J, Braun DP (1996) A method for assessing hydrologic alteration within ecosystems. Conserv Biol 10(4):1163–1174. https://doi.org/10.1046/j.1523-1739.1996.10041163.x

    Article  Google Scholar 

  • Ricostib JFC, Sauer IL (2013) An assessment of wind power prospects in the Brasilian hydrothermal system. Renew Sust Energ Rev 19:742–753. https://doi.org/10.1016/j.rser.2012.11.010

    Article  Google Scholar 

  • Schuster E, Bulling L, Köppel J (2015) Consolidating the state of knowledge—a synoptical review of wind energy’s wildlife effects. Environ Manag 56:300–331. https://doi.org/10.1007/s00267-015-0501-5

    Article  Google Scholar 

  • Scudder T (2005) The future of large dams: dealing with social, environmental, institutional and political costs. Earthscan, London 408p

    Google Scholar 

  • Silva AJC, Mariano SJPS, Calado MRA (2015) Optimal hydro-wind power generation for day-ahead pool market. IEEE Lat Am Trans 13(8):2630–2636

    Article  Google Scholar 

  • Wantzen KM, Rothhaupt KO, Mörtl M, Cantonati M, Toth LG, Fischer P (2008) Ecological effects of water-level fluctuations in lakes: an urgent issue. Hydrobiologia 613:1–4. https://doi.org/10.1007/s10750-008-9466-1

    Article  Google Scholar 

  • Weedon GP, Gomes S, Viterbo P, Shuttleworth WJ, Blyth E, Österle H, Adam JC, Bellouin N, Boucher O, Best M (2011) Creation of the WATCH forcing data and its use to assess global and regional reference crop evaporation over land during the twentieth century. J Hydrometeorol 12:823–848. https://doi.org/10.1175/2011JHM1369.1

    Article  Google Scholar 

  • Wendling U, Schellin H (1986) Neue Ergebnisse zur Berechnung der potentiellen Evapotranspiration. Z Meteorol 36:214–217

    Google Scholar 

  • Yin XA, Yang ZF, Petts GE (2011) Reservoir operating rules to sustain environmental flows in regulated rivers. Water Resour Res 47:W08509. https://doi.org/10.1029/2010WR009991

    Article  Google Scholar 

Download references

Acknowledgements

This study was performed within the bi-national (Brazil and Germany) research project INNOVATE (Interplay among multiple uses of water reservoirs via innovative coupling of aquatic and terrestrial ecosystems) funded by the German Ministry of Education and Research (BMBF, under grant numbers 01LL0904 A and D) and the Brazilian Council of Scientific and Technologic Development (CNPq), Ministry of Science, Technology e Innovation (MCTI) and Federal University of Pernambuco (UFPE).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hagen Koch.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koch, H., Silva, A.L.C., de Azevedo, J.R.G. et al. Integrated hydro- and wind power generation: a game changer towards environmental flow in the Sub-middle and Lower São Francisco River Basin?. Reg Environ Change 18, 1927–1942 (2018). https://doi.org/10.1007/s10113-018-1301-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10113-018-1301-2

Keywords

Navigation