Skip to main content

Advertisement

Log in

Current and future suitability areas of kermes oak (Quercus coccifera L.) in the Levant under climate change

  • Original Article
  • Published:
Regional Environmental Change Aims and scope Submit manuscript

Abstract

Quercus coccifera L. (Kermes oak) is an evergreen oak, typical of the maquis in the eastern and south-eastern part of the Mediterranean. It occurs almost continuously along the Syrian–Lebanese coast up to 1500 m and is more scattered inland, up to the arid southernmost area of Petra in Jordan. Human impact and global warming both strongly affect the natural distribution of the species, thus leading to a widespread forest fragmentation in the whole region. In this study, we investigate the current bioclimatic range of Kermes oak and forecast which areas are potentially most suitable over the course of the twenty-first century. Ecological niche modelling was used to retrieve the environmental envelope of the species according to 23 topographic and climate variables. Five algorithms and three general circulation models were applied to provide the potential distribution of Kermes oak at the present time and project it to the future. Results showed a current suitability area in the Middle East extending from NW of Syria, rather continuously along the Lebanese coasts and inland up to the Mediterranean western slopes of Palestine and the Golan area (Israel), encompassing the Jordan Valley towards Dana and Wadi Rum (Jordan), with an isolated patch in Jabal Al-Arab (South Syria). Future scenarios depict a significant fragmentation and restriction of Kermes oak range, especially in the north of Syria and Golan, with a general shifting in altitude. This information may be useful in helping the foresters to cope with the challenge of climate changes by identifying the most suitable areas climatically effective for successful ecosystem restoration and management, including reforestation programmes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abi-Saleh B, Barbero M, Nahal I, Quézel P (1976) Les séries forestières de végétation au Liban. Essai d’interprétation schématique Bulletin De La Societe Botanique de France 123:541–560

    Article  Google Scholar 

  • Alberto FJ, Aitken SN, Alia R, Gonzalez-Martinez SC, Hanninen H, Kremer A, Lefevre F, Lenormand T, Yeaman S, Whetten R, Savolainen O (2013) Potential for evolutionary responses to climate change evidence from tree populations. Glob Chang Biol 19:1645–1661. doi:10.1111/Gcb.12181

    Article  Google Scholar 

  • Al-Eisawi D (1996) Vegetation of Jordan. UNESCO-Cairo office, Cairo

    Google Scholar 

  • Al-Eisawi D (2012) Conservation of natural ecosystems in Jordan. Pak J Bot 44:95–99

    Google Scholar 

  • Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N, Vennetier M, Kitzberger T, Rigling A, Breshears DD, Hogg ET (2010) A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For Ecol Manag 259:660–684. doi:10.1016/j.foreco.2009.09.001

    Article  Google Scholar 

  • Araújo MB, Alagador D, Cabeza M, Nogués-Bravo D, Thuiller W (2011) Climate change threatens European conservation areas. Ecol Lett 14:484–492

    Article  Google Scholar 

  • ARIJ (2007) Status of the environment in the occupied Palestinian territory. Applied Research Institute of Jerusalem, Jerusalem

    Google Scholar 

  • Baquedano FJ, Castillo FJ (2007) Drought tolerance in the Mediterranean species Quercus coccifera, Quercus ilex, Pinus halepensis, and Juniperus phoenicea. Photosynthetica 45:229–238

    Article  Google Scholar 

  • Baquedano FJ, Valladares F, Castillo FJ (2008) Phenotypic plasticity blurs ecotypic divergence in the response of Quercus coccifera and Pinus halepensis to water stress. Eur J For Res 127:495–506. doi:10.1007/s10342-008-0232-8

    Article  Google Scholar 

  • Bellard C, Bertelsmeier C, Leadley P, Thuiller W, Courchamp F (2012) Impacts of climate change on the future of biodiversity. Ecol Lett 15:365–377. doi:10.1111/j.1461-0248.2011.01736.x

    Article  Google Scholar 

  • Beniston M (2003) Climatic change in mountain regions: a review of possible impacts. In: Diaz HF (ed) Climate variability and change in high elevation regions: past, present and future. Springer, Netherlands, pp 5–31

    Chapter  Google Scholar 

  • Benito Garzon M, Sanchez de Dios R, Sainz Ollero H (2008) Effects of climate change on the distribution of Iberian tree species. Appl Veg Sci 11:169–178. doi:10.3170/2008-7-18348

    Article  Google Scholar 

  • Bianco P, Schirone B (1985) On Quercus coccifera L. sl: variation in reproductive phenology. Taxon 34:436–439. doi:10.2307/1221210

    Article  Google Scholar 

  • Bussotti F, Ferrini F, Pollastrini M, Fini A (2014) The challenge of Mediterranean sclerophyllous vegetation under climate change: from acclimation to adaptation. Environ Exp Bot 103:80–98. doi:10.1016/j.envexpbot.2013.09.013

    Article  Google Scholar 

  • Camus A (1938) Les Chenes. Monographie du genus Quercus. Tome I. Lechevalier, Paris, pp 435–463

    Google Scholar 

  • Casazza G, Giordani P, Benesperi R, Foggi B, Viciani D, Filigheddu R, Farris E, Bagella S, Pisanu S, Mariotti MG (2014) Climate change hastens the urgency of conservation for range-restricted plant species in the central-northern Mediterranean region. Biol Conserv 179:129–138. doi:10.1016/j.biocon.2014.09.015

    Article  Google Scholar 

  • Connolly B, Orrock J (2015) Climatic variation and seed persistence: freeze–thaw cycles lower survival via the joint action of abiotic stress and fungal pathogens. Oecologia. doi:10.1007/s00442-015-3369-4

    Google Scholar 

  • Daget P (1977) Le bioclimat méditerranéen: analyse des formes climatiques par le système d’Emberger. Vegetatio 34:87–103

    Article  Google Scholar 

  • Danin A (1992) Flora and vegetation of Israel and adjacent areas. Bocconea 3:18–42

    Google Scholar 

  • Danin A (2001) Near East: ecosystems, plant diversity. Encycl Biodivers 4:353–364

    Article  Google Scholar 

  • De Casas RR, Vargas P, Pérez-Corona E, Manrique E, Quintana JR, García-Verdugo C, Balaguer L (2007) Field patterns of leaf plasticity in adults of the long-lived evergreen Quercus coccifera. Ann Bot 100:325–334

    Article  Google Scholar 

  • Denk T, Grimm GW (2010) The oaks of western Eurasia: traditional classifications and evidence from two nuclear markers. Taxon 59:351–366

    Google Scholar 

  • Diaz S, Lavorel S, de Bello F, Quetier F, Grigulis K, Robson M (2007) Incorporating plant functional diversity effects in ecosystem service assessments. PNAS 104:20684–20689. doi:10.1073/pnas.0704716104

    Article  CAS  Google Scholar 

  • Diniz-Filho JAF, Ferro VG, Santos T, Nabout JC, Dobrovolski R, De Marco P (2010) The three phases of the ensemble forecasting of niche models: geographic range and shifts in climatically suitable areas of Utetheisa ornatrix (Lepidoptera, Arctiidae). Rev Bras Entomol 54:339–349. doi:10.1590/S0085-56262010000300001

    Article  Google Scholar 

  • Emberger L (1930) Sur une formule climatique applicable en géographie botanique. Compt Rend Séances Acad Sci 191:389–390

    Google Scholar 

  • FAO, MoA (2005) National forest and tree assessment and inventory. Final report TCP/LEB/2903

  • Fielding AH, Bell JF (1997) A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ Conserv 24:38–49

    Article  Google Scholar 

  • García D, Zamora R (2003) Persistence, multiple demographic strategies and conservation in long-lived Mediterranean plants. J Veg Sci 14:921–926

    Article  Google Scholar 

  • Ghattas R, Hrimat N, Isaac J (2005) Palestine. In: Merlo M, Croitoru L (eds) Valuing Mediterranean forests: towards total economic value. CABI International, Wallingford, Cambridge, pp 133–145

    Chapter  Google Scholar 

  • Ghazal A (2008) Landscape ecological, phytosociological and geobotanical study of Eu-Mediterranean in west of Syria. University of Hohenheim, Stuttgart, Germany, 260 p

    Google Scholar 

  • Gonzalez P, Neilson RP, Lenihan JM, Drapek RJ (2010) Global patterns in the vulnerability of ecosystems to vegetation shifts due to climate change. Glob Ecol Biogeogr 19:755–768

    Article  Google Scholar 

  • Gordo O, Sanz JJ (2010) Impact of climate change on plant phenology in Mediterranean ecosystems. Glob Change Biol 16:1082–1106. doi:10.1111/j.1365-2486.2009.02084.x

    Article  Google Scholar 

  • Govaerts R, Frodin DG (1998) World checklist and bibliography of Fagales Kew: Royal Botanic Gardens, Kew vii, 407 p-illus. ISBN 1900347466

  • Hajar L, Khater C, Cheddadi R (2008) Vegetation changes during the late Pleistocene and Holocene in Lebanon: a pollen record from the Bekaa Valley. Holocene 18:1089–1099

    Article  Google Scholar 

  • Hannah L (2008) Protected areas and climate change. Ann N Y Acad Sci 1134:201–212

    Article  Google Scholar 

  • Hannah L, Midgley G, Andelman S, Araújo M, Hughes G, Martinez-Meyer E, Pearson R, Williams P (2007) Protected area needs in a changing climate. Front Ecol Environ 5:131–138. doi:10.1890/1540-9295(2007)5[131:PANIAC]2.0.CO;2

    Article  Google Scholar 

  • Hayhoe K, Cayan D, Field CB, Frumhoff PC, Maurer EP, Miller NL, Moser SC, Schneider SH, Cahill KN, Cleland EE (2004) Emissions pathways, climate change, and impacts on California. PNAS 101:12422–12427

    Article  CAS  Google Scholar 

  • Hens L (2012) Environmentally displaced people. Encycl Life Support Syst (EOLSS) 2:48–51

    Google Scholar 

  • Hidalgo PJ, Marín JM, Quijada J, Moreira JM (2008) A spatial distribution model of cork oak (Quercus suber) in southwestern Spain: a suitable tool for reforestation. For Ecol Manag 255:25–34. doi:10.1016/j.foreco.2007.07.012

    Article  Google Scholar 

  • Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978. doi:10.1002/joc.1276

    Article  Google Scholar 

  • Hunter ML (2007) Climate change and moving species: furthering the debate on assisted colonization. Conserv Biol 21:1356–1358

    Article  Google Scholar 

  • IPCC (2014) Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)]. IPCC, Geneva, Switzerland, 151 pp

  • Jawarneh MS, Brake MH, Muhidat R, Migdadi HM, Lahham JN, El-Oqlah AE (2012) Characterization of quercus species distributed in Jordan using molecular markers. In: International conference on applied life sciences, Turkey, InTech, pp 229–234

  • Jomaa I, Auda Y, Saleh BA, Hamze M, Safi S (2008) Landscape spatial dynamics over 38 years under natural and anthropogenic pressures in Mount Lebanon. Landsc Urban Plan 87:67–75. doi:10.1016/j.landurbplan.2008.04.007

    Article  Google Scholar 

  • Jomaa I, Auda Y, Hamze M, Abi Saleh B, Safi S (2009) Analysis of eastern Mediterranean oak forests over the period 1965–2003 using landscape indices on a patch basis. Landsc Res 34:105–124. doi:10.1080/01426390802591569

    Article  Google Scholar 

  • Jump AS, Matyas C, Penuelas J (2009) The altitude-for-latitude disparity in the range retractions of woody species. Trends Ecol Evol 24:694–701. doi:10.1016/j.tree.2009.06.007

    Article  Google Scholar 

  • Kelley CP, Mohtadi S, Cane MA, Seager R, Kushnir Y (2015) Climate change in the Fertile Crescent and implications of the recent Syrian drought. PNAS 112:3241–3246

    Article  CAS  Google Scholar 

  • Kelly AE, Goulden ML (2008) Rapid shifts in plant distribution with recent climate change. PNAS 105:11823–11826. doi:10.1073/pnas.0802891105

    Article  CAS  Google Scholar 

  • Kitoh A, Yatagai A, Alpert P (2008) First super-high-resolution model projection that the ancient “Fertile Crescent” will disappear in this century. Hydrol Res Lett 2:1–4

    Article  Google Scholar 

  • Klausmeyer KR, Shaw MR (2009) Climate change, habitat loss, protected areas and the climate adaptation potential of species in Mediterranean ecosystems worldwide. PLoS One. doi:10.1371/Journal.Pone.0006392

    Google Scholar 

  • Kumar P (2012) Assessment of impact of climate change on Rhododendrons in Sikkim Himalayas using Maxent modelling: limitations and challenges. Biodivers Conserv 21:1251–1266. doi:10.1007/s10531-012-0279-1

    Article  Google Scholar 

  • Lenoir J, Gegout JC, Marquet PA, de Ruffray P, Brisse H (2008) A significant upward shift in plant species optimum elevation during the 20th century. Science 320:1768–1771. doi:10.1126/science.1156831

    Article  CAS  Google Scholar 

  • Loarie SR, Duffy PB, Hamilton H, Asner GP, Field CB, Ackerly DD (2009) The velocity of climate change. Nature 462:1052–1055

    Article  CAS  Google Scholar 

  • López-Tirado J, Hidalgo PJ (2014) A high resolution predictive model for relict trees in the Mediterranean-mountain forests (Pinus sylvestris L., P. nigra Arnold and Abies pinsapo Boiss.) from the south of Spain: a reliable management tool for reforestation. For Ecol Manag 330:105–114

    Article  Google Scholar 

  • Médail F, Diadema K (2009) Glacial refugia influence plant diversity patterns in the Mediterranean Basin. J Biogeogr 36:1333–1345. doi:10.1111/j.1365-2699.2008.02051.x

    Article  Google Scholar 

  • Menitsky YL (2005) Oaks of Asia. Science Publishers, Enflied

    Google Scholar 

  • Morin X, Roy J, Sonié L, Chuine I (2010) Changes in leaf phenology of three European oak species in response to experimental climate change. New Phytol 186:900–910. doi:10.1111/j.1469-8137.2010.03252.x

    Article  Google Scholar 

  • Muñoz MED, de Giovanni R, de Siqueira MF, Sutton T, Brewer P, Pereira RS, Canhos DAL, Canhos VP (2011) openModeller: a generic approach to species’ potential distribution modelling. Geoinformatica 15:111–135. doi:10.1007/s10707-009-0090-7

    Article  Google Scholar 

  • Nahal I, Zahoueh S (2005) Syria. In: Merlo M, Croitoru L (eds) Valuing Mediterranean forests: towards total economic value. CABI International, Wallingford, Cambridge, pp 177–194

    Google Scholar 

  • Nahal I, Rahma A, Chalabi MN (1989) Forest and Forest Nurseries. Books and published department of Aleppo University, Faculty of Agriculture, Aleppo

    Google Scholar 

  • Ozturk M, Dogan Y, Sakcali MS, Doulis A, Karam F (2010) Ecophysiological responses of some maquis (Ceratonia siliqua L., Olea oleaster Hoffm. & Link, Pistacia lentiscus and Quercus coccifera L.) plant species to drought in the east Mediterranean ecosystem. J Environ Biol 31:233–245

    Google Scholar 

  • Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Annu Rev Ecol Evol Syst 37:637–669. doi:10.1146/annurev.ecolsys.37.091305.110100

    Article  Google Scholar 

  • Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42. doi:10.1038/Nature01286

    Article  CAS  Google Scholar 

  • Pearson RG, Dawson TP (2003) Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Glob Ecol Biogeogr 12:361–371. doi:10.1046/j.1466-822X.2003.00042.x

    Article  Google Scholar 

  • Peel MC, Finlayson BL, McMahon TA (2007) Updated world map of the Koppen–Geiger climate classification. Hydrol Earth Syst Sci 11:1633–1644

    Article  Google Scholar 

  • Peñuelas J, Boada M (2003) A global change-induced biome shift in the Montseny mountains (NE Spain). Glob Change Biol 9:131–140. doi:10.1046/j.1365-2486.2003.00566.x

    Article  Google Scholar 

  • Petroselli A, Vessella F, Cavagnuolo L, Piovesan G, Schirone B (2013) Ecological behavior of Quercus suber and Quercus ilex inferred by topographic wetness index (TWI). Trees-Struct Funct 27:1201–1215. doi:10.1007/s00468-013-0869-x

    Article  Google Scholar 

  • Quézel P, Médail F (2003) Ecologie et biogéographie des forêts du bassin méditerranéen. Elsevier, Paris

    Google Scholar 

  • Rafferty NE, CaraDonna PJ, Bronstein JL (2015) Phenological shifts and the fate of mutualisms. Oikos 124:14–21

    Article  Google Scholar 

  • Reyer CPO, Leuzinger S, Rammig A, Wolf A, Bartholomeus RP, Bonfante A, de Lorenzi F, Dury M, Gloning P, Abou Jaoude R, Klein T, Kuster TM, Martins M, Niedrist G, Riccardi M, Wohlfahrt G, de Angelis P, de Dato G, Francois L, Menzel A, Pereira M (2013) A plant’s perspective of extremes: terrestrial plant responses to changing climatic variability. Glob Change Biol 19:75–89. doi:10.1111/gcb.12023

    Article  Google Scholar 

  • Ruiz-Labourdette D, Schmitz MF, Pineda FD (2013) Changes in tree species composition in Mediterranean mountains under climate change: indicators for conservation planning. Ecol Indic 24:310–323. doi:10.1016/j.ecolind.2012.06.021

    Article  Google Scholar 

  • Sanz-Elorza M, Dana ED, Gonzalez A, Sobrino E (2003) Changes in the high-mountain vegetation of the central Iberian peninsula as a probable sign of global warming. Ann Bot-London 92:273–280. doi:10.1093/aob/mcg130

    Article  Google Scholar 

  • Sarris D, Christodoulakis D, Körner C (2011) Impact of recent climatic change on growth of low elevation eastern Mediterranean forest trees. Clim Change 106:203–223. doi:10.1007/s10584-010-9901-y

    Article  Google Scholar 

  • Schirone B, Spada F, Piovesan G, Simeone MC (2015) Phenorhythms and forest refugia. In: Box EO, Fujiwara K (eds) Warm-temperate deciduous forests around the northern hemisphere. Springer, London, pp 213–223

    Google Scholar 

  • Schoenfeld S (2010) Environment and human security in the eastern Mediterranean: regional environmentalism in the reframing of Palestinian–Israeli–Jordanian relations. Achiev Environ Sec Ecosyst Serv Hum Welf 69:113

    Google Scholar 

  • Simeone MC, Piredda R, Papini A, Vessella F, Schirone B (2013) Application of plastid and nuclear markers to DNA barcoding of Euro-Mediterranean oaks (Quercus, Fagaceae): problems, prospects and phylogenetic implications. Bot J Linn Soc 172:478–499. doi:10.1111/Boj.12059

    Article  Google Scholar 

  • Thomas CD (2011) Translocation of species, climate change, and the end of trying to recreate past ecological communities. Trends Ecol Evol 26:216–221. doi:10.1016/j.tree.2011.02.006

    Article  Google Scholar 

  • Thuiller W, Lavorel S, Araújo MB, Sykes MT, Prentice IC (2005) Climate change threats to plant diversity in Europe. PNAS 102:8245–8250. doi:10.1073/pnas.0409902102

    Article  CAS  Google Scholar 

  • Thuiller W, Lavergne S, Roquet C, Boulangeat I, Lafourcade B, Araujo MB (2011) Consequences of climate change on the tree of life in Europe. Nature 470:531–534. doi:10.1038/nature09705

    Article  CAS  Google Scholar 

  • Tomaselli R (1977) The degradation of the Mediterranean maquis. Ambio :356–362

  • Toumi L, Lumaret R (2010) Genetic variation and evolutionary history of holly oak: a circum-Mediterranean species-complex [Quercus coccifera L./Q. calliprinos (Webb) Holmboe, Fagaceae]. Plant Syst Evol 290:159–171. doi:10.1007/s00606-010-0358-2

    Article  Google Scholar 

  • Trabaud L (1991) Fire regimes and phytomass growth dynamics in a Quercus-Coccifera garrigue. J Veg Sci 2:307–314. doi:10.2307/3235921

    Article  Google Scholar 

  • Tutin TG, Heywood VH, Burges NA, Valentine DH, Walters SM, Webb DA (eds) (2001) Flora europaea. Cambridge University Press, Cambridge

    Google Scholar 

  • Underwood EC, Viers JH, Klausmeyer KR, Cox RL, Shaw MR (2009) Threats and biodiversity in the Mediterranean biome. Divers Distrib 15:188–197. doi:10.1111/j.1472-4642.2008.00518.x

    Article  Google Scholar 

  • UNDP (2011) Lebanon’s second national communication to the united nations framework convention on climate change. Lebanese Ministry of the Environment, Beirut

    Google Scholar 

  • van Vuuren DP, Edmonds J, Kainuma M, Riahi K, Thomson A, Hibbard K, Hurtt GC, Kram T, Krey V, Lamarque JF, Masui T, Meinshausen M, Nakicenovic N, Smith SJ, Rose SK (2011) The representative concentration pathways: an overview. Clim Change 109:5–31. doi:10.1007/s10584-011-0148-z

    Article  Google Scholar 

  • Vessella F, Schirone B (2013) Predicting potential distribution of Quercus suber in Italy based on ecological niche models: conservation insights and reforestation involvements. For Ecol Manag 304:150–161. doi:10.1016/j.foreco.2013.05.006

    Article  Google Scholar 

  • Vessella F, Simeone MC, Schirone B (2015) Quercus suber range dynamics by ecological niche modelling: from the last interglacial to present time. Quat Sci Rev 119:85–93. doi:10.1016/j.quascirev.2015.04.018

    Article  Google Scholar 

  • Vitasse Y, Lenz A, Körner C (2014) The interaction between freezing tolerance and phenology in temperate deciduous trees. Front Plant Sci 5:541. doi:10.3389/fpls.2014.00541

    Article  Google Scholar 

  • Whyte RO (1950) The phytogeographical zones of Palestine. Geogr Rev 40:600–614

    Article  Google Scholar 

  • Xu J, Grumbine RE, Shrestha A, Eriksson M, Yang X, Wang Y, Wilkes A (2009) The melting Himalayas: cascading effects of climate change on water, biodiversity, and livelihoods. Conserv Biol 23:520–530

    Article  CAS  Google Scholar 

  • Zohary M (1960) The maquis of Quercus calliprinos in Israel and Jordan. Bull Res Counc Israel 90:51–72

    Google Scholar 

  • Zohary D, Hopf M (2000) Domestication of plants in the old world: the origin and spread of cultivated plants in West Asia, Europe, and the Nile Valley. Oxford University Press, Oxford

    Google Scholar 

Download references

Acknowledgments

We are thankful to the Institutions and persons who provided the presence data points of Q. coccifera in the Levant, namely: Prof. Magda Bou Dagher Kharrat (Saint Joseph University, Beirut, Lebanon), Lebanon Reforestation Initiative (LRI, http://lri-lb.org/), Israel Biodiversity Information System (http://www.biogis.huji.ac.il) for the online dataset freely available on species distributions in Israel, Prof. Mutaz Al-Qutob, Prof. Khalid Sawalha and Prof. Jihad Abbadi (Al-Quds University of Jerusalem, State of Palestine). This work was partially funded by the European Project “Reinforcing Capacity Building for Defending Biodiversity in the Palestinian Territories” (DEBPAL2, Grant agreement n. 294936) through the 7th Framework Programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Federico Vessella.

Additional information

Editor: Wolfgang Cramer.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3277 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Qaddi, N., Vessella, F., Stephan, J. et al. Current and future suitability areas of kermes oak (Quercus coccifera L.) in the Levant under climate change. Reg Environ Change 17, 143–156 (2017). https://doi.org/10.1007/s10113-016-0987-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10113-016-0987-2

Keywords

Navigation