Skip to main content

Advertisement

Log in

Sustainable forest management in a mountain region in the Central Western Carpathians, northeastern Slovakia: the role of climate change

  • Original Article
  • Published:
Regional Environmental Change Aims and scope Submit manuscript

Abstract

European forestry is facing many challenges, including the need to adapt to climate change and an unprecedented increase in forest damage. We investigated these challenges in a Norway spruce-dominated mountain region in Central Europe. We used the model Sibyla to explore forest biomass production to the year 2100 under climate change and under two alternative management systems: the currently applied management (CM), which strives to actively improve the forest’s adaptive capacity, and no management (NM) as a reference. Because biodiversity is thought to have mostly positive effects on the adaptive capacity of forests and on the quality of ecosystem services, we explored how climate change and management affect indicators of biodiversity. We found a differential response across the elevation-climatic gradient, including a drought-induced decrease in biomass production over large areas. With CM, the support of non-spruce species and the projected improvement of their growth increased tree species diversity. The promotion of species with higher survival rates led to a decrease in forest damage relative to both the present conditions and NM. NM preserved the high density of over-matured spruce trees, which caused forest damage to increase. An abundance of dead wood and large standing trees, which can increase biodiversity, increased with NM. Our results suggest that commercial spruce forests, which are not actively adapted to climate change, tend to preserve their monospecific composition at a cost of increased forest damage. The persisting high rates of damage along with the adverse effects of climate change make the prospects of such forests uncertain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alessandri A, De Felice M, Zeng N, Mariotti A, Pan Y, Cherchi A, Lee JY, Wang B, Ha KJ, Ruti P, Artale V (2014) Robust assessment of the expansion and retreat of Mediterranean climate in the 21st century. Nat Sci Rep 4:7211. doi:10.1038/srep07211

    Article  CAS  Google Scholar 

  • Allen CD, Macalady AK, Chenchouni H, Bacheletd D, McDowelle N, Vennetierf M, Kitzbergerg T, Riglingh A, Breshearsi DD, Hoggj EH, Gonzalezk P, Fenshaml R, Zhangm Z, Castron J, Demidovao N, Limp JH, Allardq G, Runningr SW, Semercis A, Cobbt N (2010) A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For Ecol Manag 259:660–684. doi:10.1016/j.foreco.2009.09.001

    Article  Google Scholar 

  • Anderegg WRL, Schwalm C, Biondi F, Camarero JJ, Koch G, Litvak M, Ogle K, Shaw JD, Shevliakova E, Williams AP, Wolf A, Ziaco E, Pacala S (2015) Pervasive drought legacies in forest ecosystems and their implications for carbon cycle models. Science 349(6247):528–532. doi:10.1126/science.aab1833

    Article  CAS  Google Scholar 

  • Badea O, Tanase M, Georgeta J, Anisoara L, Peiov A, Uhlirova H, Pajtik J, Wawrzoniak J, Shparyk Y (2004) Forest health status in the Carpathian Mountains over the period 1997–2001. Environ Pollut 130(1):93–98. doi:10.1016/j.envpol.2003.10.024

    Article  CAS  Google Scholar 

  • Bergh J, Linder S (1999) Effects of soil warming during spring on photosynthetic recovery in boreal Norway spruce stands. Glob Change Biol 5:245–253. doi:10.1046/j.1365-2486.1999.00205.x

    Article  Google Scholar 

  • Bigot C, Dorren LK, Berger F (2008) Quantifying the protective function of a forest against rockfall for past, present and future scenarios using two modelling approaches. Nat Hazards 49(1):99–111. doi:10.1007/s11069-008-9280-0

    Article  Google Scholar 

  • Boisvenue C, Running SW (2006) Impacts of climate change on natural forest productivity—evidence since the middle of the 20th century. Glob Change Biol 12:862–882. doi:10.1111/j.1365-2486.2006.01134.x

    Article  Google Scholar 

  • Bolte A, Ammer C, Löf M, Madsen P, Nabuurs GJ, Schall P, Spathelf P, Rock J (2009) Adaptive forest management in central Europe: climate change impacts, strategies and integrative concept. Scand J For Res 24:473–482. doi:10.1080/02827580903418224

    Article  Google Scholar 

  • Bošeľa M, Petráš R, Šebeňa V, Mecko J, Marušák R (2013) Evaluating competitive interactions between trees in mixed forests in the Western Carpathians: Comparison between long-term experiments and SIBYLA simulations. For Ecol Manag 310:577–588. doi:10.1016/j.foreco.2013.09.005

    Article  Google Scholar 

  • Briner S, Elkin C, Huber R, Grêt-Regamey A (2012) Assessing the impacts of economic and climate changes on land-use in mountain regions: a spatial dynamic modeling approach. Agric Ecosyst Environ 149:50–63. doi:10.1016/j.agee.2011.12.011

    Article  Google Scholar 

  • Briner S, Elkin C, Huber R (2013) Evaluating the relative impact of climate and economic changes on forest and agricultural ecosystem services in mountain regions. J Environ Manage 129:414–422. doi:10.1016/j.jenvman.2013.07.018

    Article  Google Scholar 

  • Bugmann H, Cordonnier T, Truhetz H, Lexer MJ (2015) Impacts of business as usual management on ecosystem services in European mountain ranges under climate change: Introduction. Reg Environ Change (accepted)

  • Cavin L, Mountford EP, Peterken GF, Jump AS (2013) Extreme drought alters competitive dominance within and between tree species in a mixed forest stand. Funct Ecol 27(6):1424–1435. doi:10.1111/1365-2435.12126

    Article  Google Scholar 

  • Dentener FJ (2006) Global maps of atmospheric nitrogen deposition, 1860, 1993, and 2050. Data set. Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge, TN. daac.ornl.gov

  • Díaz S, Fargione J, Chapin FS III, Tilman D (2006) Biodiversity loss threatens human well-being. PLoS Biol 4(8):e277. doi:10.1371/journal.pbio.0040277

    Article  Google Scholar 

  • Ďurský J (1997) Modellierung der Absterbeprozesse in Rein und Mischbeständen aus Fichte und Buche. Allg Forst Jagdztg 168:131–134

    Google Scholar 

  • Ďurský J, Pretzsch H, Kahn M (1996) Modellhalfe Nachbildung der Mortalität von Fichte und Buche in Einzelbaumsimulatoren. Jahrestagung 1996 der Sektion Ertragskunde des DVFFA in Neresheim, Tagungsber, pp 267–277

  • Elkin C, Gutiérrez AG, Leuzinger S (2013) A 2 °C warmer world is not safe for ecosystem services in the European Alps. Glob Change Biol 19:1827–1840. doi:10.1111/gcb.12156

    Article  Google Scholar 

  • Fabrika M, Ďurský J (2005) Algorithms and software solution of thinning models for SIBYLA growth simulator. J For Sci 51:431–445

    Google Scholar 

  • Gamfeldt L, Snäll T, Bagchi R, Jonsson M, Gustafsson L, Kjellander P, Ruiz-Jaen MC, Fröberg M, Stendahl J, Philipson CD, Mikusiński G, Andersson E, Westerlund B, Andrén H, Moberg F, Moen J, Bengtsson J (2013) Higher levels of multiple ecosystem services are found in forests with more tree species. Nat Commun 4:1340–1347. doi:10.1038/ncomms2328

    Article  Google Scholar 

  • Griess VC, Acevedo R, Härtl F, Staupendahl K, Knoke T (2012) Does mixing tree species enhance stand resistance against natural hazards? A case study for spruce. For Ecol Manag 267:284–296. doi:10.1016/j.foreco.2011.11.035

    Article  Google Scholar 

  • Guariguata MR, Locatelli B, Haupt F (2012) Adapting tropical production forests to global climate change: risk perceptions and actions. Int For Rev 14:27–38. doi:10.1505/146554812799973226

    Google Scholar 

  • Gustafsson L, Baker SC, Bauhus J, Beese WJ, Brodie A, Kouki J, Lindenmayer DB, Lõhmus A, Pastur GM, Messier C, Neyland M, Palik B, Sverdrup-Thygeson A, Volney WJA, Wayne A, Franklin JF (2012) Retention forestry to maintain multifunctional forests: a world perspective. Bioscience 62:633–645. doi:10.1525/bio.2012.62.7.6

    Article  Google Scholar 

  • Hanewinkel M, Cullmann DA, Schelhaas MJ, Nabuurs GJ, Zimmermann NE (2012) Climate change may cause severe loss in the economic value of European forest land. Nat Clim Change 3:203–207. doi:10.1038/nclimate1687

    Article  Google Scholar 

  • Harrison PA, Berry PM, Simpson G, Haslett JR, Blicharska M, Bucur M, Dunford R, Egoh B, Garcia-Llorente M, Geamănă N, Geertsema W, Lommelen E, Meiresonne L, Turkelboom F (2014) Linkages between biodiversity attributes and ecosystem services: a systematic review. Ecosyst Serv 9:191–203. doi:10.1016/j.ecoser.2014.05.006

    Article  Google Scholar 

  • Hlásny T, Sitková Z (2010) Spruce forests decline in the Beskids. National Forest Centre—Forest Research Institute Zvolen, Czech University of Life Sciences Prague, Forestry and Game Management Research Institute Jíloviště—Strnady, Zvolen, Slovakia

  • Hlásny T, Turčáni M (2013) Persisting bark beetle outbreak indicates the unsustainability of secondary Norway spruce forests: case study from Central Europe. Ann For Sci 70(5):481–491. doi:10.1007/s13595-013-0279-7

    Article  Google Scholar 

  • Hlásny T, Barcza Z, Fabrika M, Balázs B, Churkina G, Pajtík J, Sedmák R, Turčáni M (2011) Climate change impacts on growth and carbon balance of forests in Central Europe. Clim Res 47:219–236. doi:10.3354/cr01024

    Article  Google Scholar 

  • Hlásny T, Barcza Z, Barka I, Merganičová K, Sedmák R, Kern A, Pajtík J, Balázs B, Fabrika M, Churkina G (2014a) Future carbon cycle in mountain spruce forests of Central Europe: modelling framework and ecological inferences. For Ecol Manag 328:55–68. doi:10.1016/j.foreco.2014.04.038

    Article  Google Scholar 

  • Hlásny T, Mátyás C, Seidl R, Kulla L, Merganičová K, Trombik J (2014b) Climate change increases the drought risk in Central European forests: what are the options for adaptation? Lesn Cas For J 60:5–18. doi:10.2478/forj-2014-0001

    Google Scholar 

  • Hlásny T, Trombik J, Dobor L, Barcza Z, Barka I (2015) Future climate of the Carpathians: Climate change hot-spots and implications for ecosystems. Reg Environ Change. doi:10.1007/s10113-015-0890-2

    Google Scholar 

  • Huang JG, Bergeron Y, Denneler B, Berningerc F, Tardifd J (2007) Response of forest trees to increased atmospheric CO2. Crit Rev Plant Sci 26(5–6):265–283. doi:10.1080/07352680701626978

    Article  CAS  Google Scholar 

  • Huber R, Briner S, Peringer A, Lauber S, Seidl R, Widmer A, Gillet F, Buttler A, Le Bao Q, Hirschi C (2013) Modeling social-ecological feedback effects in the implementation of payments for environmental services in pasture-woodlands. Ecol Soc 18(2):41. doi:10.5751/ES-05487-180241

    Google Scholar 

  • Jarvis P, Linder S (2000) Botany: constraints to growth of boreal forests. Nature 405:904–905. doi:10.1038/35016154

    Article  CAS  Google Scholar 

  • Jost L (2006) Entropy and diversity. Oikos 113:363–374. doi:10.1111/j.2006.0030-1299.14714.x

    Article  Google Scholar 

  • Jump AS, Mátyás C, Peñuelas J (2009) The altitude-for-latitude disparity in the range retractions of woody species. Trends Ecol Evol 24:694–701. doi:10.1016/j.tree.2009.06.007

    Article  Google Scholar 

  • Kahn M (1994) Modellierung der Höhenentwicklung ausgewählter Baumarten in Abhängigkeit vom Standort. Forstliche Forschungsber, München

    Google Scholar 

  • Klapwijk MJ, Csóka G, Hirka A, Björkman C (2013) Forest insects and climate change: long-term trends in herbivore damage. Ecol Evol 3:4183–4196. doi:10.1002/ece3.717

    Article  Google Scholar 

  • Körner C, Ohsawa M (2005) Mountain systems. In: Hassan R, Scholes R, Ash N (ed) Millennium Ecosystem Assessment. Current state and trends: findings of the condition and trends working group. Ecosystems and human well-being, vol 1. Island Press, Washington, DC, pp 681–716

    Google Scholar 

  • Larrieu L, Cabanettes A (2012) Species, live status, and diameter are important tree features for diversity and abundance of tree microhabitats in subnatural montane beech–fir forests. Can J For Res 42:1433–1445. doi:10.1139/x2012-077

    Article  Google Scholar 

  • Lassauce A, Paillet Y, Jactel H, Bouget C (2011) Deadwood as a surrogate for forest biodiversity: meta-analysis of correlations between deadwood volume and species richness of saproxylic organisms. Ecol Indic 11:1027–1039. doi:10.1016/j.ecolind.2011.02.004

    Article  Google Scholar 

  • Linderholm HW, Linderholm K (2004) Age-dependent climate sensitivity of Pinus sylvestris L. in the central Scandinavian Mountains. Boreal Environ Res 9:307–317

    Google Scholar 

  • Lindner M, Maroschek M, Netherer S, Kremer A, Barbati A, Garcia-Gonzalo J, Seidl R, Delzon S, Corona P, Kolström M, Lexer MJ, Marchetti M (2010) Climate change im-pacts, adaptive capacity, and vulnerability of European forest ecosystems. For Ecol Manag 259:698–709. doi:10.1016/j.foreco.2009.09.023

    Article  Google Scholar 

  • Lindner M, Fitzgerald JM, Zimmermann NE, Reyer C, Delzon S, van der Maaten E, Schelhaas MJ, Lasch P, Eggers J, van der Maaten-Theunissen M, Suckow F, Psomas A, Poulter B, Hanewinkel M (2014) Climate change and European forests: what do we know, what are the uncertainties, and what are the implications for forest management? J Environ Manage 146:69–83. doi:10.1016/j.jenvman.2014.07.030

    Article  Google Scholar 

  • Mamet SD, Kershaw GP (2013) Age-dependency, climate, and environmental controls of recent tree growth trends at subarctic and alpine treelines. Dendrochronologia 31(2):75–87. doi:10.1016/j.dendro.2012.08.002

    Article  Google Scholar 

  • Martin GL, Ek AR, Monserud RA (1977) Control of plot edge bias in forest stand growth simulation models. Can J For Res 3(1):100–105. doi:10.1139/x77-014

    Article  Google Scholar 

  • Marušák R, Kašpar J (2015) Spatially-constrained harvest scheduling with respect to environmental requirements and silvicultural system. Lesn Cas For J 61(2):71–77

    Google Scholar 

  • Matala J, Hynynen J, Miina J, Ojansuu R, Peltola H, Sievänen R, Väisänen H, Kellomäki S (2003) Comparison of a physiological model and a statistical model for prediction of growth and yield in boreal forests. Ecol Model 161(1):95–116. doi:10.1016/S0304-3800(02)00297-1

    Article  Google Scholar 

  • Mátyás C, Berki I, Czúcz B, Gálos B (2010) Future of beech in Southeast Europe from the perspective of evolutionary ecology. Acta Zool Hung 6:91–110

    Google Scholar 

  • Mendes C, Américo MS, Štefanek B, Feliciano D, Mizaraite D, Nonic D, Kitchoukov E, Nybakk E, Duduman G, Weiss G, Nichiforel L, Stoyanova M, Mäkinen P, Alves R, Milijic V, Sarvašová Z (2011) Institutional innovation in European private forestry: the emergence of forest owners’ organizations. In: Weiss G (ed) Innovation in forestry: territorial and value chain relationships. CABI Publishing, Wallingford, pp 68–86

    Chapter  Google Scholar 

  • Mette T, Dolos K, Meinardus C, Bräuning A, Reineking B, Blaschke M, Pretzsch H, Beierkuhnlein C, Gohlke A, Wellstein C (2013) Climatic turning point for beech and oak under climate change in Central Europe. Ecosphere 4(12):145. doi:10.1890/ES13-00115.1

    Article  Google Scholar 

  • Millington JDA, Walters MB, Matonis MS, Liu J (2011) Modelling for forest management synergies and trade-offs: northern hardwood tree regeneration, timber and deer. Ecol Model 248:103–112. doi:10.1016/j.ecolmodel.2012.09.019

    Article  Google Scholar 

  • Moravčík M, Čaboun V, Priwitzer T (2010) Slovak Republic. In: Tommpo E et al (ed) National Forest Inventories: Pathways for common reporting. Springer, Netherlands, pp 489–504

    Google Scholar 

  • Morin X, Fahse L, de Mazancourt C, Scherer-Lorenzen M, Bugmann H (2014) Temporal stability in forest productivity increases with tree diversity due to asynchrony in species dynamics. Ecol Lett. doi:10.1111/ele.12357

    Google Scholar 

  • Nakicenovic N, Swart R (eds) (2000) Special report on emission scenarios. Cambridge University Press, Cambridge

    Google Scholar 

  • Neuner S, Albrecht A, Cullmann D, Engels F, Griess VC, Hahn WA, Hanewinkel M, Härtl F, Kölling C, Staupendahl K, Knoke T (2014) Survival of Norway spruce remains higher in mixed stands under a dryer and warmer climate. Glob Change Biol. doi:10.1111/gcb.12751

    Google Scholar 

  • Paluch R, Jastrzebski J (2013) Natural regeneration of shade-tolerant Abies alba Mill. in gradients of stand species compositions: limitation by seed availability or safe microsites? For Ecol Manage 307:322–332. doi:10.1016/j.foreco.2013.06.035

    Article  Google Scholar 

  • Paquette A, Messier C (2011) The effect of biodiversity on tree productivity: from temperate to boreal forests. Glob Ecol Biogeogr 20(1):170–180. doi:10.1111/j.1466-8238.2010.00592.x

    Article  Google Scholar 

  • Pedro MS, Rammer W, Seidl R (2014) Tree species diversity mitigates disturbance impacts on the forest carbon cycle. Oecologia. doi:10.1007/s00442-014-3150-0

    Google Scholar 

  • Peñuelas J, Ogaya R, Boada M, Jump SA (2007) Migration, invasion and decline: changes in recruitment and forest structure in a warming-linked shift of European beech forest in Catalonia (NE Spain). Ecography 30(6):829–837. doi:10.1111/j.2007.0906-7590.05247.x

    Article  Google Scholar 

  • Pretzsch H, Kahn M (1998) Konzeption und Konstruktion des Wuchsmodells SILVA 2.2—Methodische Grundlagen. Abschlußbericht Projekt W 28, Teil 2, München

  • Pretzsch H, Biber P, Ďurský J (2002) The single tree-based stand simulator SILVA: construction, application and evaluation. For Ecol Manage 162:3–21. doi:10.1016/S0378-1127(02)00047-6

    Article  Google Scholar 

  • Pretzsch H, Biber P, Schutze G, Bielak K (2014) Changes of forest stand dynamics in Europe. Facts from long-term observational plots and their relevance for forest ecology and management. For Ecol Manag 316:65–77. doi:10.1016/j.foreco.2013.07.050

    Article  Google Scholar 

  • Puettmann KJ, Wilson SM, Baker SC (2015) Silvicultural alternatives to conventional even-aged forest management—what limits global adoption? For Ecosyst 2:8. doi:10.1186/s40663-015-0031-x

    Article  Google Scholar 

  • Rebetez M, Dobbertin M (2004) Climate change may already threaten Scots pine stands in the Swiss Alps. Theor Appl Climatol 79(1–2):1–9. doi:10.1007/s00704-004-0058-3

    Article  Google Scholar 

  • Schlyter P, Stjernquist I, Bärring L, Jönsson AM, Nilsson C (2006) Assessment of the impacts of climate change and weather extremes on boreal forests in northern Europe, focusing on Norway spruce. Clim Res 31:75–84. doi:10.3354/cr031075

    Article  Google Scholar 

  • Schmid S, Zingg A, Biber P, Bugmann H (2005) Evaluation of the forest growth model SILVA along an elevational gradient in Switzerland. Eur J For Res 125(1):43–55. doi:10.1007/s10342-005-0076-4

    Article  Google Scholar 

  • Seidl R, Schelhaas MJ, Lindner M, Lexer MJ (2008) Modelling bark beetle disturbances in a large scale forest scenario model to assess climate change impacts and evaluate adaptive management strategies. Reg Environ Change 9(2):101–119. doi:10.1007/s10113-008-0068-2

    Article  Google Scholar 

  • Seidl R, Schelhaas MJ, Rammer W, Verkerk PJ (2014) Increasing forest disturbances in Europe and their impact on carbon storage. Nat Clim Change 4:806–810. doi:10.1038/nclimate2318

    Article  CAS  Google Scholar 

  • Simoncic T, Boncina A, Rosset C, Binder F, De Meo I, Cavlovic J, Gal J, Matijasic D, Schneider J, Singer F, Sitko R (2013) Importance of priority areas for multi-objective forest planning: a Central European perspective. Intl For Rev 15(4):509–523. doi:10.1505/146554813809025685

    Google Scholar 

  • Spiecker H, Hansen J, Klimo E, Skovsgaard JP, Sterba H, von Teuffel K (2004) Norway spruce conversion—options and consequences. Brill, Leiden

    Google Scholar 

  • Staudhammer CL, LeMay VM (2001) Introduction and evaluation of possible indices of stand structural diversity. Can J For Res 31(7):1105–1115. doi:10.1139/x01-033

    Article  Google Scholar 

  • Tatarinov F, Cienciala E, Vopěnka P, Avilov V (2011) Effect of climate change and nitrogen deposition on central-European forests: regional-scale simulation for South Bohemia. For Ecol Manage 262(10):1919–1927. doi:10.1016/j.foreco.2011.02.020

    Article  Google Scholar 

  • Temperli C, Bugmann H, Elkin C (2013) Cross-scale interactions among bark beetles, climate change, and wind disturbances : a landscape modeling approach. Ecol Monogr 83(3):383–402. doi:10.1890/12-1503.1

    Article  Google Scholar 

  • Thom D, Seidl R, Steyrer G, Krehan H, Formayer H (2013) Slow and fast drivers of the natural disturbance regime in Central European forest ecosystems. For Ecol Manag 307:293–302. doi:10.1016/j.foreco.2013.07.017

    Article  Google Scholar 

  • Thuiller W, Lavorel S, Araújo MB, Sykes MT, Prentice IC (2005) Climate change threats to plant diversity in Europe. Proc Natl Acad Sci USA 102:8245

    Article  CAS  Google Scholar 

  • Thuiller W, Richardson DM, Midgley GF (2007) Will climate change promote alien plant invasions? In: Nentwig W (ed) Biological invasions. Ecological studies. Springer, Berlin, vol 193, pp 197–211

  • Uhde B, Andreas Hahn W, Griess VC, Knoke T (2015) Hybrid MCDA methods to integrate multiple ecosystem services in forest management planning: a critical review. Environ Manage. doi:10.1007/s00267-015-0503-3

    Google Scholar 

  • van der Linden P, Mitchell JFB (ed) (2009) ENSEMBLES: climate change and its impacts: summary of research and results from the ENSEMBLES project. Met Office Hadley Centre, FitzRoy Road, Exeter EX1 3PB, UK

  • Walther GR, Post E, Convey P, Menzel A, Menzel A, Parmesan C, Beebee TJC, Fromentin JM, Hoegh-Guldberg O, Bairlein F (2002) Ecological responses to recent climate change. Nature 416:389–395. doi:10.1038/416389a

    Article  CAS  Google Scholar 

  • Wang WJ, He SH, Spetich MA, Shifley SR, Thompson FR, Dijak WD, Wang Q (2014) A framework for evaluating forest landscape model predictions using empirical data and knowledge. Environ Model Softw 62:230–239. doi:10.1016/j.envsoft.2014.09.003

    Article  Google Scholar 

  • Way DA (2011) The bigger they are, the harder they fall: CO2 concentration and tree size affect drought tolerance. Tree Physiol 31(2):115–166. doi:10.1093/treephys/tpr009

    Article  Google Scholar 

  • Wichmann L, Ravn HP (2001) The spread of Ips typographus (L.) (Coleoptera, Scolytidae) attacks following heavy windthrow in Denmark, analysed using GIS. For Ecol Manag 148:31–39. doi:10.1016/S0378-1127(00)00477-1

    Article  Google Scholar 

  • Zlatanov T, Elkin C, Irauschek F, Lexer MJ (2015) Impact of climate change on vulnerability of forests and ecosystem service supply in Western Rhodopes Mountains. Reg Environ Change. doi:10.1007/s10113-015-0869-z

    Google Scholar 

Download references

Acknowledgments

This research was funded by the EC 7FP project ARANGE (FP7-289437-ARANGE) (35 %), projects ITMS 26220120069 (20 %) and ITMS 26220220066 (20 %) supported by the Operational Programme Research and Development funded by the European Regional Development Fund, projects supported by the Slovak Research and Development Agency under contracts nos. DO7RP-0030-11 (5 %) and APVV-0111-10 (10 %), and projects QJ 1220316 (5 %) and QJ 1220317 (5 %) supported by the National Agency for Agriculture Research of the Czech Republic. We thank to prof. Bruce Jaffee (USA) for linguistic and editorial improvement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomáš Hlásny.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2756 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hlásny, T., Barka, I., Kulla, L. et al. Sustainable forest management in a mountain region in the Central Western Carpathians, northeastern Slovakia: the role of climate change. Reg Environ Change 17, 65–77 (2017). https://doi.org/10.1007/s10113-015-0894-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10113-015-0894-y

Keywords

Navigation