Skip to main content
Log in

Quantitative stability analysis for minimax distributionally robust risk optimization

  • Full Length Paper
  • Series B
  • Published:
Mathematical Programming Submit manuscript

Abstract

This paper considers distributionally robust formulations of a two stage stochastic programming problem with the objective of minimizing a distortion risk of the minimal cost incurred at the second stage. We carry out a stability analysis by looking into variations of the ambiguity set under the Wasserstein metric, decision spaces at both stages and the support set of the random variables. In the case when the risk measure is risk neutral, the stability result is presented with the variation of the ambiguity set being measured by generic metrics of \(\zeta \)-structure, which provides a unified framework for quantitative stability analysis under various metrics including total variation metric and Kantorovich metric. When the ambiguity set is structured by a \(\zeta \)-ball, we find that the Hausdorff distance between two \(\zeta \)-balls is bounded by the distance of their centers and difference of their radii. The findings allow us to strengthen some recent convergence results on distributionally robust optimization where the center of the Wasserstein ball is constructed by the empirical probability distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. In some references, it is called Wasserstein metric or Kantorovich–Wasserstein metric, see commentary by Villani [57]. Here we call it Kantorovich metric to distinguish it from Wasserstein metric to be defined later on.

  2. The Dirac-measure is defined by \( \delta _{\xi }(A)=\mathbb {1}_A(\xi )={\left\{ \begin{array}{ll} 1 &{}\quad \text {if }\quad \xi \in A,\\ 0 &{}\quad \text {if }\quad \xi \not \in A. \end{array}\right. }\)

References

  1. Acerbi, B.: Spectral measures of risk: a coherent representation of subjective risk aversion. J. Bank. Finance 26, 1505–1518 (2002)

    Article  Google Scholar 

  2. Armbruster, B., Delage, E.: Decision making under uncertainty when preference information is incomplete. Manag. Sci. 61, 111–128 (2015)

    Article  Google Scholar 

  3. Athreya, K.B., Lahiri, S.N.: Measure Theory and Probability Theory. Springer, Berlin (2006)

    MATH  Google Scholar 

  4. Ben-Tal, A., Ghaoui, L.E., Nemirovski, A.: Robust Optimization. Princeton University Press, Princeton (2009)

    Book  Google Scholar 

  5. Billingsley, P.: Convergence of Probability Measures. Wiley, New York (1968)

    MATH  Google Scholar 

  6. Castaing, C., Valadier, M.: Convex Analysis and Measurable Multifunctions, Lecture Notes in Mathematics. Springer, Berlin (1977)

    Book  Google Scholar 

  7. Chen, X., Sun, H., Xu, H.: Discrete approximation of two-stage stochastic and distributionally robust linear complementarity problems. Math. Program. (2018). https://doi.org/10.1007/s10107-018-1266-4

  8. Denneberg, D.: Distorted probabilities and insurance premiums. Methods Oper. Res. 63, 21–42 (1990)

    Google Scholar 

  9. Dentcheva, D., Penev, S., Ruszczyński, A.: Kusuoka representation of higher order dual risk measures. Ann. Oper. Res. 181, 325–335 (2010). https://doi.org/10.1007/s10479-010-0747-5

    Article  MathSciNet  MATH  Google Scholar 

  10. Dentcheva, D., Penev, S., Ruszczynski, A.: Statistical estimation of composite risk functionals and risk optimization problems. Ann. Inst. Stati. Math. 69, 737–760 (2017)

    Article  MathSciNet  Google Scholar 

  11. Dowd, K., Cotter, J., Sorwar, G.: Spectral risk measures: properties and limitations. J. Finance Serv. Res. 34, 61–75 (2008)

    Article  Google Scholar 

  12. Dupačová, J.: Stability in stochastic programming with recourse contaminated distributions. In: Prékopa, A., Wets, R.J.B. (eds.) Stochastic Programming 84 Part I, pp. 133–144. Springer, Berlin (2009). https://doi.org/10.1007/bfb0121117

    Chapter  Google Scholar 

  13. Dupačová, J., Gröwe-Kuska, N., Römisch, W.: Scenario reduction in stochastic programming. Math. Program. Ser. A 95(3), 493–511 (2003). https://doi.org/10.1007/s10107-002-0331-0

    Article  MATH  Google Scholar 

  14. Esfahani, P.M., Kuhn, D.: Data-driven distributionally robust optimization using the Wasserstein metric: performance guarantees and tractable reformulations. Math. Program. 171, 115–166 (2018)

    Article  MathSciNet  Google Scholar 

  15. Fan, K.: Minimax theorems. Proc. Natl. Acad. Sci. U. S. A. 39(1), 42 (1953)

    Article  MathSciNet  Google Scholar 

  16. Fournier, N., Guilline, A.: On the rate of convergence in Wasserstein distance of the empirical measure. Probab. Theory Relat. Fields 162, 707–738 (2015). https://doi.org/10.1007/s00440-014-0583-7

    Article  MathSciNet  MATH  Google Scholar 

  17. Gao, R., Kleywegt, A.: Distributionally robust stochastic optimization with wasserstein distance. (2016) Preprint arXiv:1604.02199

  18. Gibbs, A.L., Su, F.E.: On choosing and bounding probability metrics. Int. Stat. Rev. 70, 419–435 (2002)

    Article  Google Scholar 

  19. Graf, S., Luschgy, H.: Foundations of Quantization for Probability Distributions, Volume 1730 of Lecture Notes in Mathematics. Springer, Berlin (2000). https://doi.org/10.1007/BFb0103945

    Book  MATH  Google Scholar 

  20. Gröwe, N.: Estimated stochastic programs with chance constraints. Eur. J. Oper. Res. 101(2), 285–305 (1997). https://doi.org/10.1016/S0377-2217(96)00398-0

    Article  MATH  Google Scholar 

  21. Guo, S., Xu, H.: Distributionally Robust Shortfall Risk Optimization Model and Its Approximation. Mathematical Programming Series B. Springer, Berlin (2018). https://doi.org/10.1007/s10107-018-1307-z

    Book  MATH  Google Scholar 

  22. Hanasusanto, D.K., A., G., Wiesemann, W.: K-adaptability in two-stage robust binary programming. Oper. Res. 63, 877–891 (2015)

    Article  MathSciNet  Google Scholar 

  23. Hanasusanto, D.K., A., G., Wiesemann, W.: K-adaptability in two-stage distributionally robust binary programming. Oper. Res. Lett. 44, 6–11 (2016)

    Article  MathSciNet  Google Scholar 

  24. Hanasusanto GA, Kuhn D (2018) Conic programming reformulations of two-stage distributionally robust linear programs over wasserstein balls. Oper. Res. https://doi.org/10.1287/opre.2017.1698

  25. Haskell, W.B., Huang, W., Xu, H.: Preference elicitation and robust optimization with multi-attribute quasi-concave choice functions (2018). Preprint arXiv:1805.06632

  26. Heitsch, H., Römisch, W.: Scenario reduction algorithms in stochastic programming. Comput. Optim. Appl. Stoch. Program. 24(2–3), 187–206 (2003). https://doi.org/10.1023/A:1021805924152

    Article  MathSciNet  MATH  Google Scholar 

  27. Heitsch, H., Römisch, W.: A note on scenario reduction for two-stage stochastic programs. Oper. Res. Lett. 6, 731–738 (2007)

    Article  MathSciNet  Google Scholar 

  28. Hoeffding, W.: Maßstabinvariante Korrelationstheorie. Schr. Math. Inst. Univ. Berlin 5, 181–233 (1940). German

    MathSciNet  Google Scholar 

  29. Homem de Mello, T.: On rates of convergence for stochastic optimization problems under non-iid sampling. SIAM J. Optim. 19, 524–551 (2008)

    Article  MathSciNet  Google Scholar 

  30. Hörmander, L.: Sur la fonction d’appui des ensembles convexes dans un espace localement convexe. Ark. Mat. 3(2), 181–186 (1955). https://doi.org/10.1007/BF02589354. In French

    Article  MathSciNet  MATH  Google Scholar 

  31. Kantorovich, L.V., Rubinshtein, G.S.: On a space of totally additive functions. Vestnik Leningr. Univ. 13, 52–59 (1958)

    MATH  Google Scholar 

  32. Kelley, J.E.: The cutting-plane method for solving convex programs. J. Soc. Ind. Appl. Math. 8, 703–712 (1960)

    Article  MathSciNet  Google Scholar 

  33. Klatte, D.: A note on quantitative stability results in nonlinear optimization. Seminarbericht, Sektion Mathematik, Humboldt-Universität zu Berlin, Berlin 90, 77–86 (1987)

    MathSciNet  MATH  Google Scholar 

  34. Kovacevic, R.M., Pichler, A.: Tree approximation for discrete time stochastic processes: a process distance approach. Ann. Oper. Res. 235, 395–421 (2015). https://doi.org/10.1007/s10479-015-1994-2

    Article  MathSciNet  MATH  Google Scholar 

  35. Kusuoka, S.: Chapter 4: on law invariant coherent risk measures. In: Kusuoka, S., Maruyama, T. (eds.) Advances in Mathematical Economics, vol. 3, pp. 83–95. Springer, Berlin (2001). https://doi.org/10.1007/978-4-431-67891-5

    Chapter  Google Scholar 

  36. Liu, Y., Xu, H.: Stability and sensitivity analysis of stochastic programs with second order dominance constraintss. Math. Program. Ser. A 142, 435–460 (2013)

    Article  Google Scholar 

  37. Liu, Y., Pichler, A., Xu, H.: Discrete approximation and quantification in distributionally robust optimization Math. Oper. Res. (2017). https://doi.org/10.1287/moor.2017.0911

  38. Mehrotra, S., Papp, D.: A cutting surface algorithm for semi-infinite convex programming with an application to moment robust optimization. SIAM J. Optim. 24, 1670–1697 (2014). https://doi.org/10.1137/130925013

    Article  MathSciNet  MATH  Google Scholar 

  39. Norkin, V.I., Keyzer, M.A.: On convergence of kernel learning estimators. SIAM J. Optim. 20(3), 1205–1223 (2009). https://doi.org/10.1137/070696817

    Article  MathSciNet  MATH  Google Scholar 

  40. Pagès, G.: A space quantization method for numerical integration. J. Comput. Appl. Math. 89(1), 1–38 (1998). https://doi.org/10.1016/S0377-0427(97)00190-8. (ISSN 0377-0427)

    Article  MathSciNet  MATH  Google Scholar 

  41. Pflug, G., Pichler, A.: Approximations for probability distributions and stochastic optimization problems. In: Bertocchi, M., Consigli, G., Dempster, M.A.H. (eds.) Stochastic Optimization Methods in Finance and Energy Volume 163 of International Series in Operations Research & Management Science, chapter 15, pp. 343–387. Springer, New York (2011). https://doi.org/10.1007/978-1-4419-9586-5. (ISBN 978-1-4419-9586-5)

    Chapter  Google Scholar 

  42. Pflug, Ch. G., Pichler. A.: Multistage Stochastic Optimization. Springer Series in Operations Research and Financial Engineering. Springer, Berlin (2014). https://doi.org/10.1007/978-3-319-08843-3. https://books.google.com/books?id=q_VWBQAAQBAJ. (ISBN 978-3-319-08842-6)

  43. Pflug, G.C., Pichler, A.: From empirical observations to tree models for stochastic optimization: convergence properties. SIAM J. Optim. 26(3), 1715–1740 (2016). https://doi.org/10.1137/15M1043376

    Article  MathSciNet  MATH  Google Scholar 

  44. Pflug, Ch G., Wozabal, D.: Ambiguity in portfolio selection. Quant. Finance 7(4), 435–442 (2007). https://doi.org/10.1080/14697680701455410

    Article  MathSciNet  MATH  Google Scholar 

  45. Pichler, A.: The natural Banach space for version independent risk measures. Insur. Math. Econ. 53(2), 405–415 (2013). https://doi.org/10.1016/j.insmatheco.2013.07.005

    Article  MathSciNet  MATH  Google Scholar 

  46. Pichler, A., Shapiro, A.: Minimal representations of insurance prices. Insur. Math. Econ. 62, 184–193 (2015). https://doi.org/10.1016/j.insmatheco.2015.03.011

    Article  MathSciNet  MATH  Google Scholar 

  47. Pólik, I., Terlaky, T.: A survey of the S-lemma. SIAM Rev. 49, 371–418 (2007). https://doi.org/10.2307/20453987

    Article  MathSciNet  MATH  Google Scholar 

  48. Prokhorov, Y.V.: Convergence of random processes and limit theorems in probability theory. Theory Probab. Appl. 1, 157–214 (1956)

    Article  MathSciNet  Google Scholar 

  49. Rachev, S.T.: Probability Metrics and the Stability of Stochastic Models. Wiley, West Sussex (1991). http://books.google.com/books?id=5grvAAAAMAAJ

  50. Rachev, S.T., Römisch, W.: Quantitative stability in stochastic programming: the method of probability metrics. Math. Oper. Res. 27(4), 792–818 (2002). https://doi.org/10.1287/moor.27.4.792.304

    Article  MathSciNet  MATH  Google Scholar 

  51. Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970)

    Book  Google Scholar 

  52. Römisch, W.: Stability of stochastic programming problems. In: Ruszczyński, A., Shapiro, A. (eds.) Stochastic Programming, Handbooks in Operations Research and Management Science, volume 10, chapter 8. Elsevier, Amsterdam (2003)

    Google Scholar 

  53. Shapiro, A.: On Kusuoka representation of law invariant risk measures. Math. Oper. Res. 38(1), 142–152 (2013). https://doi.org/10.1287/moor.1120.0563

    Article  MathSciNet  MATH  Google Scholar 

  54. Shapiro, A., Dentcheva, D., Ruszczyński, A.: Lectures on Stochastic Programming. MOS-SIAM Series on Optimization, 2nd edn. SIAM, Philadelphia (2014). https://doi.org/10.1137/1.9780898718751

    Book  MATH  Google Scholar 

  55. Skorokhod, A.V.: Basic Principles and Applications of Probability Theory. Springer, New York (1989)

    Google Scholar 

  56. Sun, H., Xu, H.: Convergence analysis for distributionally robust optimization and equilibrium problems. Math. Oper. Res. 41, 377–401 (2015)

    Article  MathSciNet  Google Scholar 

  57. Villani, C.: Topics in Optimal Transportation, volume 58 of Graduate Studies in Mathematics. American Mathematical Society, Providence (2003). https://doi.org/10.1090/gsm/058. (ISBN 0-821-83312-X)

  58. Wiesemann, W., Kuhn, D., Sim, M.: Distributionally robust convex optimization. Oper. Res. 62, 1358–1376 (2014)

    Article  MathSciNet  Google Scholar 

  59. Xu, H., Liu, Y., Sun, H.: Distributionally robust optimization with matrix moment constraints: Lagrange duality and cutting plane method (2017)

  60. Žáčková, J.: On minimax solutions of stochastic linear programming problems. Časopis pro pěstování mathematiky 91, 423–430 (1966)

    Article  MathSciNet  Google Scholar 

  61. Zhang, J., Xu, H., Zhang, L.W.: Quantitative stability analysis for distributionally robust optimization with moment constraints (2016)

  62. Zhang, J., Xu, H., Zhang, L.W.: Quantitative stability analysis of stochastic quasi-variational inequality problems and applications (2017)

  63. Zhao, C., Guan, Y.: Data-driven risk-averse two-stage stochastic program with \(\zeta \)-structure probability metrics. Optim. Online. http://www.optimization-online.org/DB_HTML/2015/07/5014.html

  64. Zhao, C., Guan, Y.: Data-driven risk-averse stochastic optimization with wasserstein metrics. Optimization Online. http://www.optimization-online.org/DB_HTML/2015/05/4902.html

  65. Zolotarev, V.M.: Probability metrics. Teoriya Veroyatnostei i ee Primeneniya 28, 264–287 (1983)

    MathSciNet  MATH  Google Scholar 

  66. Zymler, S., Kuhn, D., Rustem, B.: Distributionally robust joint chance constraints with second-order moment information. Mathem. Program. 137, 167–198 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We would like to thank Jie Zhang for an initial proof of Theorem 1 and Shaoyan Guo for careful reading of the paper. We would also like to thank the guest editor and the two anonymous referees for insightful comments which help us significantly strengthen this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alois Pichler.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pichler, A., Xu, H. Quantitative stability analysis for minimax distributionally robust risk optimization. Math. Program. 191, 47–77 (2022). https://doi.org/10.1007/s10107-018-1347-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-018-1347-4

Keywords

Mathematics Subject Classification

Navigation