Skip to main content
Log in

On the tightness of SDP relaxations of QCQPs

  • Full Length Paper
  • Series A
  • Published:
Mathematical Programming Submit manuscript

Abstract

Quadratically constrained quadratic programs (QCQPs) are a fundamental class of optimization problems well-known to be NP-hard in general. In this paper we study conditions under which the standard semidefinite program (SDP) relaxation of a QCQP is tight. We begin by outlining a general framework for proving such sufficient conditions. Then using this framework, we show that the SDP relaxation is tight whenever the quadratic eigenvalue multiplicity, a parameter capturing the amount of symmetry present in a given problem, is large enough. We present similar sufficient conditions under which the projected epigraph of the SDP gives the convex hull of the epigraph in the original QCQP. Our results also imply new sufficient conditions for the tightness (as well as convex hull exactness) of a second order cone program relaxation of simultaneously diagonalizable QCQPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. More precisely, this is the minimum generalized eigenvalue of \(A_0\) with respect to the positive definite quadratic form in the constraint.

  2. A short proof follows from Lemma 1.

  3. Corollary 2 fails to fully recover [29, Theorem 13]. Indeed, [29, Theorem 13] also gives a description of the convex hull of the epigraph of the TRS with an additional conic constraint under some assumptions. We do not consider these additional conic constraints in our setup.

  4. Burer and Ye [18] address general QCQPs in their paper by first transforming them into diagonal QCQPs and then applying the standard SDP relaxation. In particular, the standard Shor SDP relaxation is only analyzed in the context of diagonal QCQPs.

  5. The original statement of this theorem gives additional guarantees, which are weaker than SDP tightness, when the conditions of Theorem 6 fail.

  6. Recall the example constructed in Proposition 3. This example shows that both the convex hull result and SDP tightness result fail when Assumption 3 is dropped from Theorem 2. In particular, the SDP tightness and convex hull results we recover in this section will require assumptions on k that are strictly stronger than in the polyhedral case.

References

  1. Abbe, E., Bandeira, A.S., Hall, G.: Exact recovery in the stochastic block model. IEEE Trans. Inform. Theory 62(1), 471–487 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  2. Adachi, S., Nakatsukasa, Y.: Eigenvalue-based algorithm and analysis for nonconvex QCQP with one constraint. Math. Program. 173, 79–116 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bao, X., Sahinidis, N.V., Tawarmalani, M.: Semidefinite relaxations for quadratically constrained quadratic programming: a review and comparisons. Math. Program. 129, 129 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Barvinok, A.: Feasibility testing for systems of real quadratic equations. Discrete Comput. Geom. 10, 1–13 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  5. Beck, A.: Quadratic matrix programming. SIAM J. Optim. 17(4), 1224–1238 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Beck, A., Eldar, Y.C.: Strong duality in nonconvex quadratic optimization with two quadratic constraints. SIAM J. Optim. 17(3), 844–860 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Beck, A., Drori, Y., Teboulle, M.: A new semidefinite programming relaxation scheme for a class of quadratic matrix problems. Oper. Res. Lett. 40(4), 298–302 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ben-Tal, A., den Hertog, D.: Hidden conic quadratic representation of some nonconvex quadratic optimization problems. Math. Program. 143, 1–29 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ben-Tal, A., Nemirovski, A.: Lectures on Modern Convex Optimization. MPS-SIAM Series on Optimization, vol. 2. SIAM, Philadelphia (2001)

    Book  MATH  Google Scholar 

  10. Ben-Tal, A., Teboulle, M.: Hidden convexity in some nonconvex quadratically constrained quadratic programming. Math. Program. 72, 51–63 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ben-Tal, A., El Ghaoui, L., Nemirovski, A.: Robust Optimization. Princeton Series in Applied Mathematics, vol. 28. Princeton University Press, Princeton (2009)

    Book  MATH  Google Scholar 

  12. Bienstock, D., Michalka, A.: Polynomial solvability of variants of the trust-region subproblem. In: Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 380–390. SIAM (2014)

  13. Burer, S.: A gentle, geometric introduction to copositive optimization. Math. Program. 151, 89–116 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. Burer, S., Anstreicher, K.M.: Second-order-cone constraints for extended trust-region subproblems. SIAM J. Optim. 23(1), 432–451 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Burer, S., Kılınç-Karzan, F.: How to convexify the intersection of a second order cone and a nonconvex quadratic. Math. Program. 162, 393–429 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  16. Burer, S., Monteiro, R.D.C.: A nonlinear programming algorithm for solving semidefinite programs via low-rank factorization. Math. Program. 95, 329–357 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  17. Burer, S., Yang, B.: The trust region subproblem with non-intersecting linear constraints. Math. Program. 149, 253–264 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. Burer, S., Ye, Y.: Exact semidefinite formulations for a class of (random and non-random) nonconvex quadratic programs. Math. Program. 181, 1–17 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  19. Candès, E.J., Eldar, Y.C., Strohmer, T., Voroninski, V.: Phase retrieval via matrix completion. SIAM Rev. 57(2), 225–251 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  20. Conforti, M., Cornuéjols, G., Zambelli, G.: Integer Programming. Graduate Texts in Mathematics, vol. 271. Springer, Berlin (2014)

    MATH  Google Scholar 

  21. de Klerk, E., Sotirov, R.: Exploiting group symmetry in semidefinite programming relaxations of the quadratic assignment problem. Math. Program. 122, 225–246 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. de Klerk, E., Pasechnik, D.V., Schrijver, A.: Reduction of symmetric semidefinite programs using the regular \(\ast \)-representation. Math. Program. 109, 613–624 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  23. de Klerk, E., Dobre, C., Pasechnik, D.V.: Numerical block diagonalization of matrix *-algebras with application to semidefinite programming. Math. Program. 129, 91–111 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  24. Ekeland, I., Temam, R.: Convex Analysis and Variational Problems. Classics in Applied Mathematics, vol. 28. SIAM, Philadelphia (1999)

    Book  MATH  Google Scholar 

  25. Fradkov, A.L., Yakubovich, V.A.: The S-procedure and duality relations in nonconvex problems of quadratic programming. Vestnik Leningr. Univ. Math. 6, 101–109 (1979)

    MATH  Google Scholar 

  26. Fujie, T., Kojima, M.: Semidefinite programming relaxation for nonconvex quadratic programs. J. Glob. Optim. 10(4), 367–380 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  27. Gatermann, K., Parrilo, P.A.: Symmetry groups, semidefinite programs, and sums of squares. J. Pure Appl. Algebra 192(1–3), 95–128 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  28. Gijswijt, D.: Matrix algebras and semidefinite programming techniques for codes. Technical report (2010)

  29. Ho-Nguyen, N., Kılınç-Karzan, F.: A second-order cone based approach for solving the trust region subproblem and its variants. SIAM J. Optim. 27(3), 1485–1512 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  30. Phan huy Hao, E.: Quadratically constrained quadratic programming: some applications and a method for solution. Z. Oper. Res. 26, 105–119 (1982)

    MathSciNet  MATH  Google Scholar 

  31. Jeyakumar, V., Li, G.Y.: Trust-region problems with linear inequality constraints: exact SDP relaxation, global optimality and robust optimization. Math. Program. 147, 171–206 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  32. Jiang, R., Li, D.: Simultaneous diagonalization of matrices and its applications in quadratically constrained quadratic programming. SIAM J. Optim. 26(3), 1649–1668 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  33. Jiang, R., Li, D.: Novel reformulations and efficient algorithms for the generalized trust region subproblem. SIAM J. Optim. 29(2), 1603–1633 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  34. Jiang, R., Li, D.: A linear-time algorithm for generalized trust region problems. SIAM J. Optim. 30(1), 915–932 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  35. Kılınç-Karzan, F., Yıldız, S.: Two-term disjunctions on the second-order cone. Math. Program. 154, 463–491 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  36. Locatelli, M.: Some results for quadratic problems with one or two quadratic constraints. Oper. Res. Lett. 43(2), 126–131 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  37. Locatelli, M.: Exactness conditions for an SDP relaxation of the extended trust region problem. Oper. Res. Lett. 10(6), 1141–1151 (2016)

    MathSciNet  MATH  Google Scholar 

  38. Luo, Z., Ma, W., So, A.M., Ye, Y., Zhang, S.: Semidefinite relaxation of quadratic optimization problems. IEEE Signal Process. Mag. 27(3), 20–34 (2010)

    Article  Google Scholar 

  39. Megretski, A.: Relaxations of quadratic programs in operator theory and system analysis. In: Borichev, A.A., Nikolski, N.K. (eds.) Systems, Approximation, Singular Integral Operators, and Related Topics, pp. 365–392. Springer, Berlin (2001)

    Chapter  MATH  Google Scholar 

  40. Mixon, D.G., Villar, S., Ward, R.: Clustering subgaussian mixtures by semidefinite programming. Technical report (2016)

  41. Modaresi, S., Vielma, J.P.: Convex hull of two quadratic or a conic quadratic and a quadratic inequality. Math. Program. 164, 383–409 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  42. Nesterov, Y.: Quality of semidefinite relaxation for nonconvex quadratic optimization. Technical report 1997019, Université Catholique de Louvain, Center for Operations Research and Econometrics(CORE) (1997)

  43. Ramana, M.V.: Polyhedra, spectrahedra, and semidefinite programming. In: Pardalos, P.M., Wolkowicz, H. (eds.) Topics in Semidefinite and Interior-Point Methods (Fields Institute Communications), vol. 18, pp. 27–38. AMS, Providence (1997)

    Google Scholar 

  44. Rujeerapaiboon, N., Schindler, K., Kuhn, D., Wiesemann, W.: Size matters: cardinality-constrained clustering and outlier detection via conic optimization. SIAM J. Optim. 29(2), 1211–1239 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  45. Santana, A., Dey, S.S.: The convex hull of a quadratic constraint over a polytope. Technical report (2018)

  46. Sheriff, J.L.: The convexity of quadratic maps and the controllability of coupled systems. PhD thesis, Harvard University (2013)

  47. Shor, N.Z.: Dual quadratic estimates in polynomial and Boolean programming. Ann. Oper. Res. 25, 163–168 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  48. Sturm, J.F., Zhang, S.: On cones of nonnegative quadratic functions. Math. Oper. Res. 28(2), 246–267 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  49. Tawarmalani, M., Sahinidis, N.: Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming: Theory, Algorithms, Software, and Applications. Nonconvex Optimization and Its Applications, vol. 65. Springer, New York (2002)

    MATH  Google Scholar 

  50. Vandenberghe, L., Boyd, S.: Semidefinite programming. SIAM Rev. 38(1), 49–95 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  51. Wang, A.L., Kılınç-Karzan, F.: The generalized trust region subproblem: solution complexity and convex hull results. Math. Program. (2020). https://link.springer.com/article/10.1007/s10107-020-01560-8

  52. Wang, A.L., Kılınç-Karzan, F.: On convex hulls of epigraphs of QCQPs. In: Bienstock, D., Zambelli, G. (eds.) Integer Programming and Combinatorial Optimization (IPCO 2020), pp. 419–432. Springer, Cham (2020)

    Chapter  Google Scholar 

  53. Wolkowicz, H., Saigal, R., Vandenberghe, L.: Handbook of Semidefinite Programming: Theory, Algorithms, and Applications. International Series in Operations Research and Management Science, vol. 27. Springer, Berlin (2012)

    MATH  Google Scholar 

  54. Yang, B., Anstreicher, K., Burer, S.: Quadratic programs with hollows. Math. Program. 170, 541–553 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  55. Ye, Y.: Approximating quadratic programming with bound and quadratic constraints. Math. Program. 84, 219–226 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  56. Ye, Y., Zhang, S.: New results on quadratic minimization. SIAM J. Optim. 14(1), 245–267 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  57. Yıldıran, U.: Convex hull of two quadratic constraints is an LMI set. IMA J. Math. Control Inform. 26(4), 417–450 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  58. Yıldız, S., Cornuéjols, G.: Disjunctive cuts for cross-sections of the second-order cone. Oper. Res. Lett. 43(4), 432–437 (2015)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This research is supported in part by NSF grant CMMI 1454548 and ONR grant N00014-19-1-2321. The authors wish to thank the review team for their feedback and suggestions that led to an improved presentation of the material.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatma Kılınç-Karzan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This paper is an extended version of work published in IPCO 2020 [52]. Sections 4.2, 4.3, 5, and 6, along with all of the proofs in this paper, are new material not present in the shorter version.

Appendices

Proof of Proposition 1

Proposition 1

For any SD-QCQP, we have

$$\begin{aligned} \mathcal D_\text{ SOCP } = \mathcal D_\text{ SDP } \quad \text {and}\quad {{\,\mathrm{Opt}\,}}_\text{ SOCP } = {{\,\mathrm{Opt}\,}}_\text{ SDP }. \end{aligned}$$

Proof

The second identity follows immediately from the first identity, thus it suffices to prove only the former.

Let \((x, t)\in \mathcal D_\text{ SDP }\). By definition, there exists \(X\in {{\mathbb {S}}}^N\) such that the following system is satisfied

$$\begin{aligned} {\left\{ \begin{array}{ll} Y:=\begin{pmatrix} 1 &{} x^\top \\ x &{} X \end{pmatrix}\\ \left\langle Q_0, Y \right\rangle \le 2t\\ \left\langle Q_i, Y \right\rangle \le 0 ,\,\forall i\in \llbracket m_I \rrbracket \\ \left\langle Q_i,Y \right\rangle = 0 ,\,\forall i\in \llbracket m_I+1,m \rrbracket \\ Y\succeq 0. \end{array}\right. } \end{aligned}$$

Taking a Schur complement of 1 in the matrix Y, we see that \(X\succeq xx^\top \). In particular, we have that \(X_{j,j} \ge x_j^2\) for all \(j\in \llbracket N \rrbracket \). Define the vector y by \(y_j = X_{j,j}\ge x_j^2\). Then, noting that \(\left\langle {{\,\mathrm{Diag}\,}}(a_i), X \right\rangle = \left\langle a_i, y \right\rangle \) for all \(i\in \llbracket 0,m \rrbracket \), we conclude that \((x,t)\in \mathcal D_\text{ SOCP }\).

Let \((x, t)\in \mathcal D_\text{ SOCP }\). By definition, there exists \(y\in {{\mathbb {R}}}^N\) such that the following system is satisfied

$$\begin{aligned} {\left\{ \begin{array}{ll} \left\langle a_0, y \right\rangle + 2\left\langle b_0, x \right\rangle + c_0 \le 2t\\ \left\langle a_i, y \right\rangle + 2\left\langle b_i, x \right\rangle + c_i \le 0 ,\,\forall i\in \llbracket m_I \rrbracket \\ \left\langle a_i, y \right\rangle + 2\left\langle b_i, x \right\rangle + c_i = 0 ,\,\forall i\in \llbracket m_I+1,m \rrbracket \\ y_j\ge x_j^2,\,\forall j\in \llbracket N \rrbracket . \end{array}\right. } \end{aligned}$$

Define \(X\in {{\mathbb {S}}}^N\) such that \(X_{j,j} = y_j\) for all \(j\in \llbracket N \rrbracket \) and \(X_{j,k} = x_jx_k\) for \(j\ne k\). From the definition of \(\mathcal D_\text{ SOCP }\), the relation \(y_j \ge x_j^2\) holds for all \(j\in \llbracket N \rrbracket \), therefore

$$\begin{aligned} \begin{pmatrix} 1 &{}\quad x^\top \\ x &{}\quad X \end{pmatrix}\succeq \begin{pmatrix} 1 &{}\quad x^\top \\ x &{}\quad xx^\top \end{pmatrix}\succeq 0. \end{aligned}$$

Finally, noting that \(\left\langle {{\,\mathrm{Diag}\,}}(a_i), X \right\rangle = \left\langle a_i, y \right\rangle \) for all \(i\in \llbracket 0,m \rrbracket \), we conclude that \((x,t)\in \mathcal D_\text{ SDP }\). \(\square \)

Proof of Theorem 8

Theorem 8

Suppose Assumption 1 holds. Define the hyperplane \(H = \left\{ (x,t)\in {{\mathbb {R}}}^{N+1}:\, 2t = {{\,\mathrm{Opt}\,}}_\text{ SDP }\right\} \). If the quadratic eigenvalue multiplicity k satisfies \(k \ge m+1\), then \({{\,\mathrm{conv}\,}}({\mathcal {D}}\cap H) = {\mathcal {D}}_\text{ SDP } \cap H\). In particular, \({{\,\mathrm{Opt}\,}}= {{\,\mathrm{Opt}\,}}_\text{ SDP }\).

Proof

Suppose \(({{\hat{x}}},{{\hat{t}}})\in \mathcal D_\text{ SDP }\cap H\). Then by Lemma 1 and optimality of \({{\hat{t}}}\), we have that \(2{{\hat{t}}} = \sup _{\gamma \in \varGamma }q(\gamma ,{{\hat{x}}})\), i.e.,

$$\begin{aligned} 2{{\hat{t}}}&= \sup _{\gamma \in {{\mathbb {R}}}^m} \left\{ q(\gamma ,{{\hat{x}}}) :\, \begin{array}{l} A(\gamma )\succeq 0\\ \gamma _i \ge 0 ,\,\forall i\in \llbracket m_I \rrbracket \end{array}\right\} \\&= \sup _{\gamma \in {{\mathbb {R}}}^m} \left\{ q(\gamma ,{{\hat{x}}}) :\, \begin{array}{l} \mathbb {A}(\gamma )\succeq 0\\ \gamma _i \ge 0 ,\,\forall i\in \llbracket m_I \rrbracket \end{array}\right\} . \end{aligned}$$

The second line follows as \(A(\gamma )\succeq 0\) if and only if \(\mathbb {A}(\gamma )\succeq 0\). Note that Assumption 1 allows us to apply strong conic duality to the program on the second line. Furthermore, this dual SDP achieves its optimal value, i.e., there exists \(Z\in {\mathbb {S}}^n\) such that \(({{\hat{x}}},{{\hat{t}}}, Z)\) satisfies

$$\begin{aligned} {\left\{ \begin{array}{ll} q_0({{\hat{x}}}) + \left\langle \mathbb {A}_0, Z \right\rangle = 2{{\hat{t}}}\\ q_i({{\hat{x}}}) + \left\langle \mathbb {A}_i, Z \right\rangle \le 0,\,\forall i\in \llbracket m_I \rrbracket \\ q_i({{\hat{x}}}) + \left\langle \mathbb {A}_i, Z \right\rangle =0,\,\forall i\in \llbracket m_I+1,m \rrbracket \\ Z\succeq 0. \end{array}\right. } \end{aligned}$$
(19)

We will show by induction on \({{\,\mathrm{rank}\,}}(Z)\) that for any \(({{\hat{x}}},{{\hat{t}}}, Z)\) satisfying (19), we have \(({{\hat{x}}},{{\hat{t}}})\in {{\,\mathrm{conv}\,}}({\mathcal {D}}\cap H)\). The claim clearly holds when \({{\,\mathrm{rank}\,}}(Z) = 0\).

Now suppose \(r:={{\,\mathrm{rank}\,}}(Z)\ge 1\). Let \(({{\hat{x}}},{{\hat{t}}},Z)\) satisfy (19). Write \(Z = \sum _{i=1}^{r}z_iz_i^\top \) where each \(z_i\) is nonzero. Fix \(z:=z_1\).

We claim that the following system in \(y\in {{\mathbb {R}}}^k\) is feasible:

$$\begin{aligned} {\left\{ \begin{array}{ll} \left\langle A_i{{\hat{x}}}+b_i, y\otimes z \right\rangle = 0 ,\,\forall i\in \llbracket m \rrbracket \\ y\in \mathbf{S}^{k-1}. \end{array}\right. } \end{aligned}$$
(20)

Indeed, the linear constraints impose at most m homogeneous linear equalities in \(k\ge m+1\) variables. In particular, there exists a nonzero solution y to the linear constraints. This y may then be scaled to satisfy \(y\in \mathbf{S}^{k-1}\).

Note then that for all \(i \in \llbracket 1,m \rrbracket \),

$$\begin{aligned} q_i({{\hat{x}}} \pm y\otimes z) + \left\langle \mathbb {A}_i, Z - zz^\top \right\rangle&= ({{\hat{x}}} \pm y\otimes z)^\top A_i ({{\hat{x}}} \pm y\otimes z) + 2 b_i^\top ({{\hat{x}}} \pm y\otimes z) \\&\quad + c_i + \left\langle \mathbb {A}_i, Z - zz^\top \right\rangle \\&= q_i({{\hat{x}}}) \pm 2\left\langle A_i {{\hat{x}}} + b_i, y\otimes z \right\rangle + \left\langle \mathbb {A}_i, Z \right\rangle \\&= q_i({{\hat{x}}}) + \left\langle \mathbb {A}_i, Z \right\rangle . \end{aligned}$$

Consequently, \(({{\hat{x}}} \pm y \otimes z, {{\hat{t}}}, Z - zz^\top )\) satisfies all of the constraints in (19) except possibly the first. We now verify that the first constraint is also satisfied: From

$$\begin{aligned} q_0({{\hat{x}}} \pm y \otimes z) + \left\langle \mathbb {A}_0, Z - zz^\top \right\rangle&= q_0({{\hat{x}}}) \pm 2\left\langle A_0 {{\hat{x}}} + b_0, y\otimes z \right\rangle + \left\langle \mathbb {A}_0, zz^\top \right\rangle \\&\quad + \left\langle \mathbb {A}_0, Z - zz^\top \right\rangle \\&= q_0({{\hat{x}}}) + \left\langle \mathbb {A}_0, Z \right\rangle \pm 2\left\langle A_0 {{\hat{x}}} + b_0, y\otimes z \right\rangle \\&= 2{{\hat{t}}} \pm 2\left\langle A_0 {{\hat{x}}} + b_0, y\otimes z \right\rangle , \end{aligned}$$

we deduce that \(({{\hat{x}}}\pm y \otimes z, 2{{\hat{t}}} \pm 2\left\langle A_0 {{\hat{x}}} + b_0, y\otimes z \right\rangle )\in {\mathcal {D}}_\text{ SDP }\). Then, by minimality of \({{\hat{t}}}\) in \({\mathcal {D}}_\text{ SDP }\), we infer that \(\left\langle A_0{{\hat{x}}} + b_0, y\otimes z \right\rangle = 0\).

We deduce that \(({{\hat{x}}}\pm y\otimes z, {{\hat{t}}}, Z - zz^\top )\) satisfies (19). Furthermore, we have \({{\,\mathrm{rank}\,}}(Z-zz^\top )= r-1\). By induction, \(({{\hat{x}}}\pm y\otimes z,{{\hat{t}}})\in {{\,\mathrm{conv}\,}}({\mathcal {D}}\cap H)\). We conclude that \(({{\hat{x}}},{{\hat{t}}})\in {{\,\mathrm{conv}\,}}({\mathcal {D}}\cap H)\). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, A.L., Kılınç-Karzan, F. On the tightness of SDP relaxations of QCQPs. Math. Program. 193, 33–73 (2022). https://doi.org/10.1007/s10107-020-01589-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-020-01589-9

Keywords

Mathematics Subject Classification

Navigation