Skip to main content

On Convex Hulls of Epigraphs of QCQPs

  • Conference paper
  • First Online:
Integer Programming and Combinatorial Optimization (IPCO 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12125))

Abstract

Quadratically constrained quadratic programs (QCQPs) are a fundamental class of optimization problems well-known to be NP-hard in general. In this paper we study sufficient conditions for a convex hull result that immediately implies that the standard semidefinite program (SDP) relaxation of a QCQP is tight. We begin by outlining a general framework for proving such sufficient conditions. Then using this framework, we show that the convex hull result holds whenever the quadratic eigenvalue multiplicity, a parameter capturing the amount of symmetry present in a given problem, is large enough. Our results also imply new sufficient conditions for the tightness (as well as convex hull exactness) of a second order cone program relaxation of simultaneously diagonalizable QCQPs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Due to space constraints, we omit full proofs, more detailed comparisons of our results with the literature, and our SDP tightness results in this extended abstract. The full version of this paper can be found at [38].

  2. 2.

    Corollary 1 fails to recover the full extent of [22, Theorem 13]. Indeed, [22, Theorem 13] also gives a description of the convex hull of the epigraph of the TRS with an additional conic constraint under some assumptions.

References

  1. Abbe, E., Bandeira, A.S., Hall, G.: Exact recovery in the stochastic block model. IEEE Trans. Inf. Theory 62(1), 471–487 (2015)

    Article  MathSciNet  Google Scholar 

  2. Bao, X., Sahinidis, N.V., Tawarmalani, M.: Semidefinite relaxations for quadratically constrained quadratic programming: a review and comparisons. Math. Program. 129(1), 129 (2011). https://doi.org/10.1007/s10107-011-0462-2

    Article  MathSciNet  MATH  Google Scholar 

  3. Barvinok, A.I.: Feasibility testing for systems of real quadratic equations. Discrete Comput. Geom. 10(1), 1–13 (1993). https://doi.org/10.1007/BF02573959

    Article  MathSciNet  MATH  Google Scholar 

  4. Beck, A.: Quadratic matrix programming. SIAM J. Optim. 17(4), 1224–1238 (2007)

    Article  MathSciNet  Google Scholar 

  5. Beck, A., Drori, Y., Teboulle, M.: A new semidefinite programming relaxation scheme for a class of quadratic matrix problems. Oper. Res. Lett. 40(4), 298–302 (2012)

    Article  MathSciNet  Google Scholar 

  6. Beck, A., Eldar, Y.C.: Strong duality in nonconvex quadratic optimization with two quadratic constraints. SIAM J. Optim. 17(3), 844–860 (2006)

    Article  MathSciNet  Google Scholar 

  7. Ben-Tal, A., El Ghaoui, L., Nemirovski, A.: Robust Optimization. Princeton Series in Applied Mathematics. Princeton University Press, Philadehia (2009)

    Book  Google Scholar 

  8. Ben-Tal, A., den Hertog, D.: Hidden conic quadratic representation of some nonconvex quadratic optimization problems. Math. Program. 143(1), 1–29 (2014). https://doi.org/10.1007/s10107-013-0710-8

    Article  MathSciNet  MATH  Google Scholar 

  9. Ben-Tal, A., Nemirovski, A.: Lectures on Modern Convex Optimization. MPS-SIAM Series on Optimization. SIAM, Philadehia (2001)

    Book  Google Scholar 

  10. Ben-Tal, A., Teboulle, M.: Hidden convexity in some nonconvex quadratically constrained quadratic programming. Math. Program. 72(1), 51–63 (1996). https://doi.org/10.1007/BF02592331

    Article  MathSciNet  MATH  Google Scholar 

  11. Bienstock, D., Michalka, A.: Polynomial solvability of variants of the trust-region subproblem. In: Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 380–390 (2014)

    Google Scholar 

  12. Burer, S.: A gentle, geometric introduction to copositive optimization. Math. Program. 151(1), 89–116 (2015). https://doi.org/10.1007/s10107-015-0888-z

    Article  MathSciNet  MATH  Google Scholar 

  13. Burer, S., Anstreicher, K.M.: Second-order-cone constraints for extended trust-region subproblems. SIAM J. Optim. 23(1), 432–451 (2013)

    Article  MathSciNet  Google Scholar 

  14. Burer, S., Kılınç-Karzan, F.: How to convexify the intersection of a second order cone and a nonconvex quadratic. Math. Program. 162(1), 393–429 (2017). https://doi.org/10.1007/s10107-016-1045-z

    Article  MathSciNet  MATH  Google Scholar 

  15. Burer, S., Yang, B.: The trust region subproblem with non-intersecting linear constraints. Math. Program. 149(1), 253–264 (2015). https://doi.org/10.1007/s10107-014-0749-1

    Article  MathSciNet  MATH  Google Scholar 

  16. Burer, S., Ye, Y.: Exact semidefinite formulations for a class of (random and non-random) nonconvex quadratic programs. Math. Program., 1–17 (2018). https://doi.org/10.1007/s10107-019-01367-2

  17. Candes, E.J., Eldar, Y.C., Strohmer, T., Voroninski, V.: Phase retrieval via matrix completion. SIAM Rev. 57(2), 225–251 (2015)

    Article  MathSciNet  Google Scholar 

  18. Conforti, M., Cornuéjols, G., Zambelli, G.: Integer Programming, vol. 271. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11008-0

    Book  MATH  Google Scholar 

  19. Fradkov, A.L., Yakubovich, V.A.: The S-procedure and duality relations in nonconvex problems of quadratic programming. Vestn. LGU Ser. Mat. Mekh. Astron 6(1), 101–109 (1979)

    MATH  Google Scholar 

  20. Fujie, T., Kojima, M.: Semidefinite programming relaxation for nonconvex quadratic programs. J. Glob. Optim. 10(4), 367–380 (1997). https://doi.org/10.1023/A:1008282830093. ISSN 1573-2916

    Article  MathSciNet  MATH  Google Scholar 

  21. Phan-huy Hao, E.: Quadratically constrained quadratic programming: some applications and a method for solution. Zeitschrift für Oper. Res. 26(1), 105–119 (1982)

    MathSciNet  MATH  Google Scholar 

  22. Ho-Nguyen, N., Kılınç-Karzan, F.: A second-order cone based approach for solving the trust region subproblem and its variants. SIAM J. Optim. 27(3), 1485–1512 (2017)

    Article  MathSciNet  Google Scholar 

  23. Jeyakumar, V., Li, G.Y.: Trust-region problems with linear inequality constraints: exact SDP relaxation, global optimality and robust optimization. Math. Program. 147(1), 171–206 (2014). https://doi.org/10.1007/s10107-013-0716-2

    Article  MathSciNet  MATH  Google Scholar 

  24. Kılınç-Karzan, F., Yıldız, S.: Two-term disjunctions on the second-order cone. Math. Program. 154(1), 463–491 (2015). https://doi.org/10.1007/s10107-015-0903-4

    Article  MathSciNet  MATH  Google Scholar 

  25. Locatelli, M.: Some results for quadratic problems with one or two quadratic constraints. Oper. Res. Lett. 43(2), 126–131 (2015)

    Article  MathSciNet  Google Scholar 

  26. Locatelli, M.: Exactness conditions for an SDP relaxation of the extended trust region problem. Optim. Lett. 10(6), 1141–1151 (2016). https://doi.org/10.1007/s11590-016-1001-0

    Article  MathSciNet  MATH  Google Scholar 

  27. Megretski, A.: Relaxations of quadratic programs in operator theory and system analysis. In: Borichev, A.A., Nikolski, N.K. (eds.) Systems, Approximation, Singular Integral Operators, and Related Topics, vol. 129, pp. 365–392. Birkhäuser Basel, Basel (2001). https://doi.org/10.1007/978-3-0348-8362-7_15. ISBN 978-3-0348-8362-7

    Chapter  MATH  Google Scholar 

  28. Mixon, D.G., Villar, S., Ward, R.: Clustering subgaussian mixtures by semidefinite programming. arXiv preprint arXiv:1602.06612 (2016)

  29. Modaresi, S., Vielma, J.P.: Convex hull of two quadratic or a conic quadratic and a quadratic inequality. Math. Program. 164(1–2), 383–409 (2017). https://doi.org/10.1007/s10107-016-1084-5

    Article  MathSciNet  MATH  Google Scholar 

  30. Nesterov, Y.: Quality of semidefinite relaxation for nonconvex quadratic optimization. Technical report, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE) (1997)

    Google Scholar 

  31. Rujeerapaiboon, N., Schindler, K., Kuhn, D., Wiesemann, W.: Size matters: cardinality-constrained clustering and outlier detection via conic optimization. SIAM J. Optim. 29(2), 1211–1239 (2019)

    Article  MathSciNet  Google Scholar 

  32. Santana, A., Dey, S.S.: The convex hull of a quadratic constraint over a polytope. arXiv preprint arXiv:1812.10160 (2018)

  33. Sheriff, J.L.: The convexity of quadratic maps and the controllability of coupled systems. Ph.D. thesis (2013)

    Google Scholar 

  34. Shor, N.Z.: Dual quadratic estimates in polynomial and boolean programming. Ann. Oper. Res. 25(1), 163–168 (1990). https://doi.org/10.1007/BF02283692

    Article  MathSciNet  MATH  Google Scholar 

  35. Sturm, J.F., Zhang, S.: On cones of nonnegative quadratic functions. Math. Oper. Res. 28(2), 246–267 (2003)

    Article  MathSciNet  Google Scholar 

  36. Tawarmalani, M., Sahinidis, N.V., Sahinidis, N.: Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming: Theory, Algorithms, Software, and Applications, vol. 65. Springer, Dordrecht (2002). https://doi.org/10.1007/978-1-4757-3532-1

    Book  MATH  Google Scholar 

  37. Wang, A.L., Kılınç-Karzan, F.: The generalized trust region subproblem: solution complexity and convex hull results. Technical report (2019). https://arxiv.org/abs/1907.08843

  38. Wang, A.L., Kılınç-Karzan, F.: On the tightness of SDP relaxations of QCQPs. Technical report (2019). https://arxiv.org/abs/1911.09195

  39. Wolkowicz, H., Saigal, R., Vandenberghe, L.: Handbook of Semidefinite Programming: Theory, Algorithms, and Applications, vol. 27. Springer, New York (2012). https://doi.org/10.1007/978-1-4615-4381-7

    Book  MATH  Google Scholar 

  40. Ye, Y.: Approximating quadratic programming with bound and quadratic constraints. Math. Program. 84(2), 219–226 (1999)

    Article  MathSciNet  Google Scholar 

  41. Ye, Y., Zhang, S.: New results on quadratic minimization. SIAM J. Optim. 14(1), 245–267 (2003)

    Article  MathSciNet  Google Scholar 

  42. Yıldıran, U.: Convex hull of two quadratic constraints is an LMI set. IMA J. Math. Control Inf. 26(4), 417–450 (2009)

    Article  MathSciNet  Google Scholar 

  43. Yıldız, S., Cornuéjols, G.: Disjunctive cuts for cross-sections of the second-order cone. Oper. Res. Lett. 43(4), 432–437 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This research is supported in part by NSF grant CMMI 1454548.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alex L. Wang .

Editor information

Editors and Affiliations

A Proof Sketch of Lemma 4

A Proof Sketch of Lemma 4

For simplicity, we will assume that \(\varGamma \) is a polytope in this proof sketch. Let \((\hat{x},\hat{t})\) satisfy the assumptions of Lemma 4. Without loss of generality, we may assume that \(\sup _{\gamma \in \varGamma } q(\gamma ,\hat{x}) = 2\hat{t}\).

We claim that the following system in variables v and s

$$\begin{aligned} {\left\{ \begin{array}{ll} \left\langle b(\gamma ), v \right\rangle = s,\,\forall \gamma \in \mathcal F\\ v\in \mathcal V(\mathcal F),\,s\in {\mathbb {R}}\end{array}\right. } \end{aligned}$$

has a nonzero solution. Indeed, we may replace the first constraint with at most

$$\begin{aligned} \mathrm {aff}\dim (\left\{ b(\gamma ):\, \gamma \in \mathcal F\right\} ) + 1 \le \dim (\mathcal V(\mathcal F)) \end{aligned}$$

homogeneous linear equalities in the variables v and s. The claim then follows by noting that the equivalent system is an under-constrained homogeneous system of linear equalities and thus has a nonzero solution (vs). It is easy to verify that \(v\ne 0\) and hence, by scaling, we may take \(v\in \mathbf{S}^{N-1}\).

We will modify \((\hat{x},\hat{t})\) in the (vs) direction. For \(\alpha \in {\mathbb {R}}\), define

$$\begin{aligned} (x_\alpha ,t_\alpha ):= \left( \hat{x} + \alpha v,\, \hat{t} + \alpha s\right) . \end{aligned}$$

We will sketch the existence of an \(\alpha >0\) such that \((x_\alpha ,t_\alpha )\) satisfies the conclusions of Lemma 4. A similar line of reasoning will produce an analogous \(\alpha <0\). This will complete the proof sketch.

Suppose \(\gamma \in \mathcal F\). Then, by our choice of v and s, the function \(\alpha \mapsto q(\gamma ,x_\alpha )-2t_\alpha = q(\gamma ,\hat{x}) -2t = 0\) is identically zero. Now suppose \(\gamma \in \varGamma \setminus \mathcal F\). Then, the function \(\alpha \mapsto q(\gamma ,x_\alpha )-2t_\alpha \) is a convex quadratic function which is negative at \(\alpha = 0\).

We conclude that the following set

$$\begin{aligned} \mathcal Q := \left\{ \alpha \mapsto q(\gamma ,x_\alpha ) - 2 t_\alpha :\, \gamma \in {\mathop {\mathrm {extr}}}(\varGamma )\right\} \setminus \left\{ 0\right\} , \end{aligned}$$

consists of convex quadratic functions which are negative at \(\alpha = 0\). The finiteness of this set follows from the assumption that \(\varGamma \) is polyhedral.

Assumption 1 implies that at least one of the functions in \(\mathcal Q\) is strictly convex. Then as \(\mathcal Q\) is a finite set, there exists an \(\alpha _+ >0\) such that \(q(\alpha _+)\le 0\) for all \(q\in \mathcal Q\) with at least one equality. We emphasize that this is the step where Assumption 2 cannot be dropped.

Finally, it is easy to check that \((x_{\alpha _+}, t_{\alpha _+})\) satisfies the conclusions of Lemma 4.

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, A.L., Kılınç-Karzan, F. (2020). On Convex Hulls of Epigraphs of QCQPs. In: Bienstock, D., Zambelli, G. (eds) Integer Programming and Combinatorial Optimization. IPCO 2020. Lecture Notes in Computer Science(), vol 12125. Springer, Cham. https://doi.org/10.1007/978-3-030-45771-6_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-45771-6_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-45770-9

  • Online ISBN: 978-3-030-45771-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics