Skip to main content
Log in

Laser ablation on vascular diseases: mechanisms and influencing factors

  • Review Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

Vascular diseases, such as venous insufficiency and coronary artery diseases, have been threatening the health of people. Efficient treatment with proper postoperative care is required to relieve the pain of the patients. Traditionally, venous insufficiency is treated with ligation and stripping, an open surgery whose complication rate cannot be ignored. Coronary artery disease is often treated with balloon angioplasty during which undilatable lesions may be encountered, limiting the efficacy of this approach. With advances in laser photonics and percutaneous coronary intervention procedure, laser ablation is emerging as an alternative and adjunctive therapy for these diseases. Endovenous laser ablation has the advantages of high success rate, low complication risk, and fast postoperative recovery. Laser ablation in arteries can handle uncrossable or undilatable lesions with a low incidence of serious complications. In this review, previously published research concerning vascular diseases and their therapies are analyzed in order to provide a clear explanation of the mechanisms and merits of laser ablation. For endovenous laser ablation, the main mechanisms are steam bubbles, heat conduction, and heat pipe, and three main influencing factors are wavelength, fiber types, and laser energy density. For excimer laser coronary atherectomy, the main mechanisms are photochemical, photothermal, and photomechanical effects, and three main influencing factors are catheter, medium, and laser parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ham WT Jr, Williams RC, Mueller HA et al (1965) Ocular effects of laser radiation. Acta Ophthalmol (Copenh) 43:390–409. https://doi.org/10.1111/j.1755-3768.1965.tb07878.x

    Article  PubMed  Google Scholar 

  2. Onida S, Lane TRA, Davies AH (2013) Varicose veins and their management. Surgery 31:211–217. https://doi.org/10.1016/j.mpsur.2013.02.002

    Article  Google Scholar 

  3. Whiteley MS, Patel SB (2014) Modified Tessari Tourbillon technique for making foam sclerotherapy with silicone-free syringes. Phlebology 30:614–617. https://doi.org/10.1177/0268355514554476

    Article  PubMed  Google Scholar 

  4. Gohel MS, Davies AH (2009) Radiofrequency ablation for uncomplicated varicose veins. Phlebology 24:42–49. https://doi.org/10.1258/phleb.2009.09s005

    Article  PubMed  Google Scholar 

  5. van den Bos R, Arends L, Kockaert M, Neumann M, Nijsten T (2009) Endovenous therapies of lower extremity varicosities: a meta-analysis. J Vasc Surg 49:230–239. https://doi.org/10.1016/j.jvs.2008.06.030

    Article  PubMed  Google Scholar 

  6. Roth SM (2007) Endovenous radiofrequency ablation of superficial and perforator veins. Surg Clin North Am 87:1267–1284. https://doi.org/10.1016/j.suc.2007.07.009

    Article  PubMed  Google Scholar 

  7. Cowpland CA, Cleese AL, Whiteley MS (2016) Factors affecting optimal linear endovenous energy density for endovenous laser ablation in incompetent lower limb truncal veins – a review of the clinical evidence. Phlebology 32:299–306. https://doi.org/10.1177/0268355516648067

    Article  PubMed  Google Scholar 

  8. Rasmussen LH, Lawaetz M, Bjoern L et al (2011) Randomized clinical trial comparing endovenous laser ablation, radiofrequency ablation, foam sclerotherapy and surgical stripping for great saphenous varicose veins. Br J Surg 98:1079–1087. https://doi.org/10.1002/bjs.7555

    Article  PubMed  Google Scholar 

  9. Venermo M, Saarinen J, Eskelinen E et al (2016) Randomized clinical trial comparing surgery, endovenous laser ablation and ultrasound-guided foam sclerotherapy for the treatment of great saphenous varicose veins. Br J Surg 103:1438–1444. https://doi.org/10.1002/bjs.10260

    Article  PubMed  Google Scholar 

  10. Zaman AG, Helft G, Worthley SG, Badimon JJ (2000) The role of plaque rupture and thrombosis in coronary artery disease. Atherosclerosis 149:251–266. https://doi.org/10.1016/S0021-9150(99)00479-7

    Article  PubMed  Google Scholar 

  11. Byrne RA, Stone GW, Ormiston J, Kastrati A (2017) Coronary balloon angioplasty, stents, and scaffolds. Lancet 390:781–792. https://doi.org/10.1016/S0140-6736(17)31927-X

    Article  PubMed  Google Scholar 

  12. Nishino M, Mori N, Takiuchi S et al (2017) Indications and outcomes of excimer laser coronary atherectomy: efficacy and safety for thrombotic lesions—the ULTRAMAN registry. J Cardiol 69:314–319. https://doi.org/10.1016/j.jjcc.2016.05.018

    Article  PubMed  Google Scholar 

  13. Vuylsteke ME, Mordon SR (2012) Endovenous laser ablation: a review of mechanisms of action. Ann Vasc Surg 26:424–433. https://doi.org/10.1016/j.avsg.2011.05.037

    Article  PubMed  Google Scholar 

  14. Disselhoff BCVM, Rem AI, Verdaasdonk RM, Kinderen DJD, Moll FL (2008) Endovenous laser ablation: an experimental study on the mechanism of action. Phlebology 23:69–76. https://doi.org/10.1258/phleb.2007.007038

    Article  PubMed  Google Scholar 

  15. Proebstle TM, Lehr HA, Kargl A et al (2002) Endovenous treatment of the greater saphenous vein with a 940-nm diode laser: Thrombotic occlusion after endoluminal thermal damage by laser-generated steam bubbles. J Vasc Surg 35:729–736. https://doi.org/10.1067/mva.2002.121132

    Article  PubMed  Google Scholar 

  16. Fan CM, Rox-Anderson R (2008) Endovenous laser ablation: mechanism of action. Phlebology 23:206–213. https://doi.org/10.1258/phleb.2008.008049

    Article  PubMed  Google Scholar 

  17. van der Geld CWM, van den Bos RR, van Ruijven PWM et al (2010) The heat-pipe resembling action of boiling bubbles in endovenous laser ablation. Lasers Med Sci 25:907–909. https://doi.org/10.1007/s10103-010-0780-2

    Article  PubMed  PubMed Central  Google Scholar 

  18. Egred M, Brilakis ES (2020) Excimer Laser Coronary Angioplasty (ELCA): fundamentals, mechanism of action, and clinical applications. J Invasive Cardiol 32:E27–E35

    PubMed  Google Scholar 

  19. Schmidt H, Ihlemann J, Wolff-Rottke B, Luther K, Troe J (1998) Ultraviolet laser ablation of polymers: spot size, pulse duration, and plume attenuation effects explained. J Appl Phys 83:5458–5468. https://doi.org/10.1063/1.367377

    Article  Google Scholar 

  20. Ahn M, Chae YG, Hwang J, Ahn YC, Kang HW (2017) Endoluminal application of glass-capped diffuser for ex vivo endovenous photocoagulation. J Biophotonics 10:997–1007. https://doi.org/10.1002/jbio.201500331

    Article  PubMed  Google Scholar 

  21. Gale SS, Lee JN, Walsh E, Wojnarowski DL, Comerota AJ (2010) A randomized, controlled trial of endovenous thermal ablation using the 810-nm wavelength laser and the ClosurePLUS radiofrequency ablation methods for superficial venous insufficiency of the great saphenous vein. J Vasc Surg 52:645–650. https://doi.org/10.1016/j.jvs.2010.04.030

    Article  PubMed  Google Scholar 

  22. Proebstle TM, Moehler T, Gul D, Herdemann S (2005) Endovenous treatment of the great saphenous vein using a 1320 nm Nd:YAG laser causes fewer side effects than using a 940 nm diode laser. Dermatol Surg 31:1678–1684. https://doi.org/10.2310/6350.2005.31308

    Article  PubMed  Google Scholar 

  23. Almeida J, Mackay E, Javier J, Mauriello J, Raines J (2009) Saphenous laser ablation at 1470 nm targets the vein wall. Not Blood Vasc Endovascular Surg 43:467–472. https://doi.org/10.1177/1538574409335916

    Article  PubMed  Google Scholar 

  24. Vuylsteke M, De Bo TH, Dompe G et al (2011) Endovenous laser treatment: is there a clinical difference between using a 1500 nm and a 980 nm diode laser? A multicenter randomised clinical trial. Int Angiol 30:327–334

    PubMed  Google Scholar 

  25. Mendes-Pinto D, Bastianetto P, Cavalcanti Braga Lyra L, Kikuchi R, Kabnick L (2016) Endovenous laser ablation of the great saphenous vein comparing 1920-nm and 1470-nm diode laser. Int Angiol 35:599–604

    PubMed  Google Scholar 

  26. de Araujo WJB, Timi JRR, Kotze LR, da Costa CRV (2019) Comparison of the effects of endovenous laser ablation at 1470 nm versus 1940 nm and different energy densities. Phlebology 34:162–170. https://doi.org/10.1177/0268355518778488

    Article  PubMed  Google Scholar 

  27. Navarro L, Min RJ, Bone C (2001) Endovenous laser: a new minimally invasive method of treatment for varicose veins - preliminary observations using an 810 nm diode laser. Dermatol Surg 27:117–122. https://doi.org/10.1046/j.1524-4725.2001.00134.x

    Article  PubMed  Google Scholar 

  28. Proebstle TM, Gul D, Kargl A, Knop J (2003) Endovenous laser treatment of the lesser saphenous vein with a 940-nm diode laser: early results. Dermatol Surg 29:357–361. https://doi.org/10.1046/j.1524-4725.2003.29085.x

    Article  PubMed  Google Scholar 

  29. Desmyttere J, Grard C, Wassmer B, Mordon S (2007) Endovenous 980-nm laser treatment of saphenous veins in a series of 500 patients. J Vasc Surg 46:1242–1247. https://doi.org/10.1016/j.jvs.2007.08.028

    Article  PubMed  Google Scholar 

  30. Pannier F, Rabe E, Maurins U (2009) First results with a new 1470-nm diode laser for endovenous ablation of incompetent saphenous veins. Phlebology 24:26–30. https://doi.org/10.1258/phleb.2008.008038

    Article  PubMed  Google Scholar 

  31. Fu B, Hua Y, Xiao X et al (2014) Broadband graphene saturable absorber for pulsed fiber lasers at 1, 1.5, and 2 μm. IEEE J Sel Top Quantum Electron 20:411–415. https://doi.org/10.1109/JSTQE.2014.2302361

    Article  Google Scholar 

  32. Malskat WSJ, Engels LK, Hollestein LM, Nijsten T, van den Bos RR (2019) Commonly Used Endovenous Laser Ablation (EVLA) parameters do not influence efficacy: results of a systematic review and meta-analysis. Eur J Vasc Endovasc Surg 58:230–242. https://doi.org/10.1016/j.ejvs.2018.10.036

    Article  PubMed  Google Scholar 

  33. Vuylsteke M, Van Dorpe J, Roelens J et al (2010) Intraluminal fibre-tip centring can improve endovenous laser ablation: a histological study. Eur J Vasc Endovasc Surg 40:110–116. https://doi.org/10.1016/j.ejvs.2009.09.013

    Article  PubMed  Google Scholar 

  34. Vuylsteke ME, Thomis S, Mahieu P, Mordon S, Fourneau I (2012) Endovenous laser ablation of the great saphenous vein using a bare fibre versus a tulip fibre: a randomised clinical trial. Eur J Vasc Endovasc Surg 44:587–592. https://doi.org/10.1016/j.ejvs.2012.09.003

    Article  PubMed  Google Scholar 

  35. Pannier F, Rabe E, Rits J, Kadiss A, Maurins U (2011) Endovenous laser ablation of great saphenous veins using a 1470 nm diode laser and the radial fibre - follow-up after six months. Phlebology 26:35–39. https://doi.org/10.1258/phleb.2010.009096

    Article  PubMed  Google Scholar 

  36. Hirokawa M, Kurihara N (2014) Comparison of bare-tip and radial fiber in endovenous laser ablation with 1470 nm diode laser. Ann Vasc Dis 7:239–245. https://doi.org/10.3400/avd.oa.14-00081

    Article  PubMed  PubMed Central  Google Scholar 

  37. Cavallini A, Marcer D, Ruffino SF (2014) Endovenous ablation of incompetent saphenous veins with a new 1540-nanometer diode laser and ball-tipped fiber. Ann Vasc Surg 28:686–694. https://doi.org/10.1016/j.avsg.2013.06.033

    Article  PubMed  Google Scholar 

  38. Van Gia T, Van Nam T, Hwang J, Kang HW (2018) Effect of spatial light distribution on the thermal response of vascular tissue. Biomed Opt Express 9:3037–3048. https://doi.org/10.1364/boe.9.003037

    Article  Google Scholar 

  39. Proebstle TM, Krummenauer F, Gul D, Knop J (2004) Nonocclusion and early reopening of the great saphenous vein after endovenous laser treatment is fluence dependent. Dermatol Surg 30:174–178. https://doi.org/10.1111/j.1524-4725.2004.30051.x

    Article  PubMed  Google Scholar 

  40. Proebstle TM, Moehler T, Herdemann S (2006) Reduced recanalization rates of the great saphenous vein after endovenous laser treatment with increased energy dosing: definition of a threshold for the endovenous fluence equivalent. J Vasc Surg 44:834–839. https://doi.org/10.1016/j.jvs.2006.05.052

    Article  PubMed  Google Scholar 

  41. Golbasi I, Turkay C, Erbasan O et al (2015) Endovenous laser with miniphlebectomy for treatment of varicose veins and effect of different levels of laser energy on recanalization. A single center experience. Lasers Med Sci 30:103–108. https://doi.org/10.1007/s10103-014-1626-0

    Article  PubMed  Google Scholar 

  42. Ignatieva NY, Zakharkina OL, Masayshvili CV et al (2017) The role of laser power and pullback velocity in the endovenous laser ablation efficacy: an experimental study. Lasers Med Sci 32:1105–1110. https://doi.org/10.1007/s10103-017-2214-x

    Article  PubMed  Google Scholar 

  43. Srivatsa SS, Chung S, Sidhu V (2019) The relative roles of power, linear endovenous energy density, and pullback velocity in determining short-term success after endovenous laser ablation of the truncal saphenous veins. J Vasc Surg-Venous Lymphat Dis 7:90–97. https://doi.org/10.1016/j.jvsv.2018.07.018

    Article  Google Scholar 

  44. Nagamine S, Ashikaga T, Masuda S et al (2019) Comparison of 0.9-mm and 1.4-mm catheters in excimer laser coronary angioplasty for acute myocardial infarction. Lasers Med Sci 34:1747–1754. https://doi.org/10.1007/s10103-019-02772-x

    Article  PubMed  Google Scholar 

  45. Fretz EB, Smith P, Hilton JD (2001) Initial experience with a low profile, high energy excimer laser catheter for heavily calcified coronary lesion debulking: parameters and results of first seven human case experiences. J Interv Cardiol 14:433–437. https://doi.org/10.1111/j.1540-8183.2001.tb00354.x

    Article  PubMed  Google Scholar 

  46. Bittl JA, Brinker JA, Sanborn TA, Isner JM, Tcheng JE (1995) The changing profile of patient selection, procedural techniques, and outcomes in excimer laser coronary angioplasty. Participating investigators of the percutaneous excimer laser coronary angioplasty registry. J Interv Cardiol 8:653–660. https://doi.org/10.1111/j.1540-8183.1995.tb00915.x

    Article  PubMed  Google Scholar 

  47. Deckelbaum LI, Natarajan MK, Bittl JA et al (1995) Effect of intracoronary saline infusion on dissection during excimer laser coronary angioplasty: a randomized trial. The Percutaneous Excimer Laser Coronary Angioplasty (PELCA) Investigators. J Am Coll Cardiol 26:1264–1269. https://doi.org/10.1016/0735-1097(95)00330-4

    Article  PubMed  Google Scholar 

  48. Herzog A, Oszkinis G, Planer D et al (2017) Atherectomy using a solid-state laser at 355 nm wavelength. J Biophotonics 10:1271–1278. https://doi.org/10.1002/jbio.201600209

    Article  PubMed  Google Scholar 

  49. Tanawuttiwat T, Gallego D, Carrillo RG (2014) Lead extraction experience with high frequency excimer laser. PACE-Pacing Clin Electrophysiol 37:1120–1128. https://doi.org/10.1111/pace.12406

    Article  PubMed  Google Scholar 

  50. Mohandes M, Fernandez L, Rojas S et al (2021) Safety and efficacy of coronary laser ablation as an adjunctive therapy in percutaneous coronary intervention: a single-centre experience. Coron Artery Dis 32:241–246. https://doi.org/10.1097/mca.0000000000000989

    Article  PubMed  Google Scholar 

Download references

Funding

This work was funded by National Natural Science Foundation of China (62071016, 92049201, 82350003), College Students’ Innovative Entrepreneurial Training Plan Program, and Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Contributions

Boqu He and Bo Fu conceived and designed the review. Boqu He and Pengtianyu Qiu analyzed and interpreted the relevant data. Boqu He, Chenghong Zhang, Wenhao Lyu, and Congyu Zhang did manuscript writing. Bo Fu, Chenghong Zhang, Wenhao Lyu, Pengtianyu Qiu, Congyu Zhang, Xiaoli Zhao, Xiaogang Wang, Boqu He, and Xunming Ji did critical revision of the article. Boqu He and Xunming Ji have the overall responsibility. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Bo Fu or Xunming Ji.

Ethics declarations

Ethical approval

Not applicable because this is a review manuscript and does not contain any experiments in regard to human or animals.

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Lyu, W., Qiu, P. et al. Laser ablation on vascular diseases: mechanisms and influencing factors. Lasers Med Sci 39, 18 (2024). https://doi.org/10.1007/s10103-023-03964-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10103-023-03964-2

Keywords

Navigation