Skip to main content
Log in

Effects of photobiomodulation therapy on the functional performance of healthy individuals: a systematic review with meta-analysis

  • Review Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

The aim of this study is to assess the effect of photobiomodulation therapy (PBMT) on functional performance concerning strength, fatigue, and functional capacity in healthy individuals. This systematic review with meta-analysis involved searches on data platforms and active searches of randomized clinical trials, focusing on PBMT as the sole intervention. Primary outcomes assessed included strength, fatigue, and functional capacity. Three reviewers screened studies by title and abstract using Rayyan, and data were extracted using a specific form. Bias risk was assessed using RoB2, and confidence in the evidence was evaluated using the Grading of Recommendations Assessment, Development, and Evaluation (GRADE). The RevMan was used for meta-analysis. Sixteen studies were included, totaling 340 individuals (183 males and 157 women). Most articles presented a low risk of bias. Variability was observed in device types and application domains, including wavelengths (655–905 nm), power (10–200 nW), energy (0.6–30 J per point), and time (30–100 s per point). PBMT improved fatigue recovery (mean difference: 5.87; 95% CI 3.83, 7.91). There was no enhancement in strength (peak torque: mean difference 12.40; 95% CI -5.55, 30.55; one-repetition maximum test: mean difference 39.97, 95% CI -2.44, 82.38; isometric and isokinetic strength: mean difference 2.77, 95% CI -14.90, 20.44) nor improvement in short-term (mean difference 0.67, 95% CI -0.58, 1.91) and long-term (mean difference 18.44, 95% CI -55.65, 92.54) functional capacity. PBMT may aid in favoring fatigue recovery in healthy individuals; however, there's no evidence to support PBMT enhancing strength or improving functional capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kou YT, Liu HT, Hou CY, Lin CY, Tsai CM, Chang H (2019) A transient protective effect of low-level laser irradiation against disuseinduced atrophy of rats. Lasers Med Sci 34:1829–1839

    Article  PubMed  Google Scholar 

  2. De Marchi T, Schmitt VM, Machado GP, de Sene JS, de Col CD, Tairova O, Salvador M, Leal-Junior ECP (2017) Does photobiomodulation therapy is better than cryotherapy in muscle recovery after a high-intensity exercise? A randomized, double-blind, placebo-controlled clinical trial. Lasers Med Sci 32:429–437

    Article  PubMed  Google Scholar 

  3. Heiskanen V, Hamblin MR (2018) Correction: Photobiomodulation: lasers vs. light emitting diodes? Photochem Photobiol Sci 18:259

    Article  PubMed  Google Scholar 

  4. Xu GZ, Jia J, Jin L, Li JH, Wang ZY, Cao DY (2018) Low-level laser therapy for temporomandibular disorders: a systematic review with meta-analysis. Pain Res Manag 2018:4230583

    Article  PubMed  PubMed Central  Google Scholar 

  5. Toma RL, Vassão PG, Assis L, Antunes HK, Renno AC (2016) Low level laser therapy associated with a strength training program on muscle performance in elderly women: a randomized double blind control study. Lasers Med Sci 31:1219–1229

    Article  PubMed  Google Scholar 

  6. Ferraresi C, Kaippert B, Avci P, Huang Y-Y, de Sousa MVP, Bagnato VS, Parizotto NA, Hamblin MR (2015) Low-level laser (light) therapy increases mitochondrial membrane potential and ATP synthesis in C2C12 myotubes with a peak response at 3–6 h. Photochem Photobiol 91:411–416

    Article  CAS  PubMed  Google Scholar 

  7. Lanferdini FJ, Krüger RL, Baroni BM, Lazzari C, Figueiredo P, Reischak-Oliveira A, Vaz MA (2018) Low-level laser therapy improves the VO2 kinetics in competitive cyclists. Lasers Med Sci 33:453–460

    Article  PubMed  Google Scholar 

  8. Ferraresi C, Huang YY, Hamblin MR (2016) Photobiomodulation in human muscle tissue: an advantage in sports performance? J Biophotonics 9:1273–1299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Vanin AA, Miranda EF, Machado CSM de Paiva PRV, Albuquerque-Pontes GM, Casalechi HL, de Carvalho PdTC, Leal-Junior ECP (2016) What is the best moment to apply phototherapy when associated to a strength training program? A randomized, double-blinded, placebocontrolled trial. Lasers Med Sci 31:1555–1564

  10. Baroni BM, Rodrigues R, Freire BB, Franke RA, Geremia JM, Vaz MA (2015) Effect of low-level laser therapy on muscle adaptation to knee extensor eccentric training. Eur J Appl Physiol 115:639–647

    Article  CAS  PubMed  Google Scholar 

  11. Ferraresi C, Oliveira TB, Zafalon LO, Reiff RBdM, Baldissera V, de Andrade Perez SE, Júnior EM, Parizotto NA (2011) Effects of low level laser therapy (808 nm) on physical strength training in humans. Lasers Med Sci 26:349–358

    Article  PubMed  Google Scholar 

  12. Vassão PG, Toma RL, Antunes HKM, Renno ACM (2018) Photobiomodulation and physical exercise on strength, balance and functionality of elderly women. Phys Ther Movem 31:10

    Google Scholar 

  13. Miranda EF, Vanin AA, Tomazoni SS Grandinetti VdS, de Paiva PRV, Machado CdSM, Monteiro KKDS, Casalechi HL, de Tarso P, de Carvalho C, Leal-Junior ECP (2016) Using pre-exercise photobiomodulation therapy combining super-pulsed lasers and light-emitting diodes to improve performance in progressive cardiopulmonary exercise tests. J Athl Train 51:129–135

  14. Shefer G, Oron U, Irintchev A, Wernig A, Halevy O (2001) Skeletal muscle cell activation by low-energy laser irradiation: a role for the MAPK/ERK pathway. J Cell Physiol 187:73–80

    Article  CAS  PubMed  Google Scholar 

  15. Iyomasa DM, Garavelo I, Iyomasa MM, Watanabe IS, Issa JP (2009) Ultrastructural analysis of the low level laser therapy effects on the lesioned anterior tibial muscle in the gerbil. Micron 40:413–418

    Article  CAS  PubMed  Google Scholar 

  16. Page MJ, McKenzie JE, Bossuyt PM Boutron I, Hoffmann TC, Mulrow CD, Shamseer L, Tetzlaff JM, Akl EA, Brennan SE, Chou R, Glanville J, Grimshaw JM, Hróbjartsson A, Lalu MM, Li T, Loder EV, Mayo-Wilson E, McDonald S, McGuinness LA, Stewart LA, Thomas J, Tricco AC, Welch VA, Whiting P, Moher D (2021) The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. Sys Rev 10:89

  17. Ouzzani M, Hammady H, Fedorowicz Z, Elmagarmid A (2016) Rayyan—a web and mobile app for systematic reviews. Syst Rev 5:210

    Article  PubMed  PubMed Central  Google Scholar 

  18. Sterne JAC, Savović J, Page MJ, Elbers RG, Blencowe NS, Boutron I, Cates CJ, Cheng H-Y, Corbett MS, Eldridge SM, Emberson JR, Hernán MA, Hopewell S, Hróbjartsson A, Junqueira DR, Jüni P, Kirkham JJ, Lasserson T, Li T, McAleenan A, Reeves BC, Shepperd S, Shrier I, Stewart LA, Tilling K, White IR, Whiting PF, Higgins JPT (2019) RoB 2: a revised tool for assessing risk of bias in randomised trials. BMJ 366:l4898

    Article  PubMed  Google Scholar 

  19. Schünemann H, Brożek J, Guyatt G, Oxman A (2013) GRADE handbook for grading quality of evidence and strength of recommendations. The GRADE Working Group. http://guidelinedevelopment.org/handbook

  20. GRADEpro GDT (2022) GRADEpro guideline development tool [Software]. McMaster university and evidence prime. https://gradepro.org

  21. Dornelles MP, Fritsch CG, Sonda FC, Johnson DS, Leal-Junior ECP, Vaz MA, Baroni BM (2019) Terapia de fotobiomodulação como ferramenta para prevenir lesões por distensão dos isquiotibiais, reduzindo a fadiga induzida pelo futebol nos músculos isquiotibiais. Lasers Med Sci 34:1177–1184

    Article  PubMed  Google Scholar 

  22. Machado AF, Leal-Junior ECP, Batista NP, Espinoza RMCPP, Hidalgo RBR, Carvalho FA, Micheletti JK, Vanderlei FM, Pastre CM (2022) A terapia de fotobiomodulação aplicada durante um programa de treinamento físico não promove efeitos adicionais em indivíduos treinados: A ensaio randomizado controlado por placebo. Braz J Phys Ther 26:100388

    Article  PubMed  PubMed Central  Google Scholar 

  23. Vieira WHdB, Bezerra RM, Queiroz RAS, Maciel NFB, Parizotto NA, Ferraresi C (2014) Use of Low-level laser therapy (808 nm) to muscle fatigue resistance: A randomized double-blind crossover trial. Photomed Laser Surg 32:678–685

    Article  Google Scholar 

  24. Toma RL, Oliveira MX, Renno ACM, Laakso E-L (2018) Photobiomodulation (PBM) therapy at 904 nm mitigates effects of exercise-induced skeletal muscle fatigue in young women. Lasers Med Sci 33:1197–1205

    Article  PubMed  Google Scholar 

  25. Leal Junior ECP, Lopes-Martins RÁB, Dalan F, Ferrari M, Sbabo FM, Generosi RA, Baroni BM, Penna SC, Iversen VV, Bjordal JM (2008) Effect of 655-nm low-level laser therapy on exercise-induced skeletal muscle fatigue in humans. Photomed Laser Surg 26:419–424

    Article  PubMed  Google Scholar 

  26. Leal Junior ECP, Lopes-Martins RÁB, Vanin AA, Baroni BM, Grosselli D, De Marchi T, Iversen VV, Bjordal JM (2009) Effect of 830 nm low-level laser therapy in exercise-induced skeletal muscle fatigue in humans. Lasers Med Sci 24:425–431

    Article  PubMed  Google Scholar 

  27. Leal Junior ECP, Lopes-Martins RÁB, Rossi RP, De Marchi T, Baroni BM, de Godoi V, Marcos RL, Ramos L, Bjordal JM (2009) Effect of cluster multi-diode light emitting diode therapy (LEDT) on exercise-induced skeletal muscle fatigue and skeletal muscle recovery in humans. Lasers Surg Med 41:572–577

  28. Leal Junior ECP, Lopes-Martins RÁB, Frigo L, De Marchi T, Rossi RP, de Godoi V, Tomazoni SS, Silva DP, Basso M, Filho PL, de Valls Corsetti F, Iversen VV, Bjordal JM (2010) Effects of low-level laser therapy (LLLT) in the development of exercise-induced skeletal muscle fatigue and changes in biochemical markers related to postexercise recovery. J Orthop Sports Phys Ther 40:524–532

  29. Fritsch CG, Dornelles MP, Teodoro JL, da Silva LXN, Vaz MA, Pinto RS, Cadore EL, Baroni BM (2019) Effects of photobiomodulation therapy associated with resistance training in elderly men: a randomized double-blinded placebo-controlled trial. Eur J Appl Physiol 119:279–289

    Article  CAS  PubMed  Google Scholar 

  30. Rodrigues CP, Jacinto JL, Roveratti MC, Nunes JP, Pacagnelli FL, Andraus RAC, Soares-Caldeira LF, Ribeiro AS, Buzzachera CF, Aguiar AF (2020) Effects of laser photobiomodulation therapy at 808 nm on muscle performance and perceived exertion in elderly women. Top Geriat Rehab 36:237–245

    Article  Google Scholar 

  31. Flandes CA (2020) Terapia por fotobiomodulação associada ao treinamento resistido em mulheres idosas fisicamente ativas-ensaio clínico, randomizado, placebo-controlado. Universidade Nove de Julho, Dissertação

    Google Scholar 

  32. Tucci HT, Figueiredo DS, Carvalho RdP, Souza ACF, Vassão PG, Renno ACM, Ciol MA (2019) Quadriceps femoris performance after resistance training with and without photobiomodulation in elderly women: a randomized clinical trial. Lasers Med Sci 34:1583–1594

    Article  PubMed  Google Scholar 

  33. Bakeeva LE, Manteĭfel' VM, Rodichev EB, Karu TI (1993) Formation of gigantic mitochondria in human blood lymphocytes under the effect of an He-Ne laser. Mol Biol 27:608–617

    CAS  Google Scholar 

  34. Manteĭfel' VM, Karu TI (2005) Structure of mitochondria and activity of their respiratory chain in subsequent generations of yeast cells exposed to He-Ne laser light. Izv Akad Nauk Ser Biol 6:672–683

    Google Scholar 

  35. Allen DG, Lamb GD, Westerblad H (2008) Skeletal muscle fatigue: cellular mechanisms. Physiol Rev 88:287–332. https://doi.org/10.1152/physrev.00015.2007

    Article  CAS  PubMed  Google Scholar 

  36. Vladimirov YA, Osipov AN, Klebanov GI (2004) Photobiological principles of therapeutic applications of laser radiation. Biochemistry 69:81–90

    CAS  PubMed  Google Scholar 

  37. De Marchi T, Ferlito JV, Ferlito MV, Salvador M, Leal-Junior ECP (2022) Can photobiomodulation therapy (PBMT) minimize exercise-induced oxidative stress? A systematic review and meta-analysis. Antioxidants 11(167111):1671

    Article  PubMed  PubMed Central  Google Scholar 

  38. Manini TM, Clark BC (2012) Dynapenia and aging: an update. J Gerontol A Biol Sci Med Sci 67:28–40

    Article  PubMed  Google Scholar 

  39. Baudry S, Klass M, Pasquet B, Duchateau J (2007) Age-related fatigability of the ankle dorsiflexor muscles during concentric and eccentric contractions. Eur J Appl Physiol 100:515

    Article  PubMed  Google Scholar 

  40. Greenlund L (2003) Sarcopenia—consequences, mechanisms, and potential therapies. Mech Ageing Dev 124:287–299

    Article  CAS  PubMed  Google Scholar 

  41. Evans WJ, Campbell WW (1993) Sarcopenia and age-related changes in body composition and functional capacity. J Nutr 123:465–468

    Article  CAS  PubMed  Google Scholar 

  42. Clark BC, Manini TM (2012) What is dynapenia? Nutrition 28:495–503

    Article  PubMed  PubMed Central  Google Scholar 

  43. Enwemeka CS (2009) Intricacies of dose in laser phototherapy for tissue repair and pain relief. Photom and Laser Surg 27:387–393

    Article  Google Scholar 

  44. Enwemeka CS, Parker JC, Dowdy DS, Harkness EE, Harkness LE, Woodruff LD (2004) The efficacy of low-power lasers in tissue repair and pain control: a meta-analysis study. Photom and Laser Surg 22:323–329

    Article  Google Scholar 

Download references

Funding

This work was supported by the Coordination for the Improvement of Higher Education Personnel (CAPES)—Financing Code 001.

Author information

Authors and Affiliations

Authors

Contributions

Significant involvement in study conceptualization and data collection: Lívia Oliveira Bezerra, Luiza Eduarda Silva de Macedo, Maria Letícia Araújo da Silva, Joyce Maria Pereira de Oliveira. Data analysis/interpretation: Lívia Oliveira Bezerra, Luiza Eduarda Silva de Macedo, Maria Letícia Araújo da Silva, Joyce Maria Pereira de Oliveira, Guilherme Pertinni de Morais Gouveia, Palloma Rodrigues de Andrade, Maria Thereza Albuquerque Barbosa Cabral Micussi. Involvement in manuscript drafting or revision: Lívia Oliveira Bezerra, Luiza Eduarda Silva de Macedo, Maria Letícia Araújo da Silva, Joyce Maria Pereira de Oliveira, Guilherme Pertinni de Morais Gouveia, Palloma Rodrigues de Andrade, Maria Thereza Albuquerque Barbosa Cabral Micussi. Approval of the final manuscript version for publication: Guilherme Pertinni de Morais Gouveia, Palloma Rodrigues de Andrade, Maria Thereza Albuquerque Barbosa Cabral Micussi.

Corresponding author

Correspondence to Maria Thereza Albuquerque Barbosa Cabral Micussi.

Ethics declarations

Ethical approval

Ethical approval not required for literature review and meta-analysis.

Informed consent

Informed consent not applicable for literature review and meta-analysis.

Conflict of interest

No conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bezerra, L.O., de Macedo, L.E.S., da Silva, M.L.A. et al. Effects of photobiomodulation therapy on the functional performance of healthy individuals: a systematic review with meta-analysis. Lasers Med Sci 39, 17 (2024). https://doi.org/10.1007/s10103-023-03956-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10103-023-03956-2

Keywords

Navigation