Skip to main content

Advertisement

Log in

The effect of bone remodeling with photobiomodulation in dentistry: a review study

  • Review Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

Photobiomodulation (PBM) has been emerging as a promising alternative therapy in dentistry. However, various parameters of PBM are used in different studies, and there is limited cumulative data on PBM for improving bone formation in clinical trials. The aim of this review was to evaluate the effectiveness of PBM in the process of bone remodeling in dentistry using randomized controlled trials. Initially, a total of 1,011 articles published from January 2008 to December 2021 were retrieved from five electronic databases (PubMed, Scopus, Cochrane Library, EMBASE, and CINAHL). After a two-step review, nine articles met the inclusion criteria. The parameter of PBM, group, treatment sessions, assessment times and outcomes of the included studies were reviewed. Eighty-nine percent of the studies revealed positive effects on bone formation between the laser group and the control group. Only one article reported that light-emitting diode did not significantly enhance osteogenesis. Additionally, the present study shows that Gallium aluminum arsenide of near infrared (NIR) laser with continuous mode is the most commonly used form of PBM. The biostimulatory effects are dependent on several parameters, with wavelength and dose being more important than others. Based on this review, it is suggested that the NIR range and an appropriate dose of PBM could be used to increase the efficiency of stimulating bone healing and remodeling. However, standardization of treatment protocols is needed to clarify therapeutic strategies in dentistry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Data used to support the findings of this study are included in the article.

References

  1. Oshiro T, Calderhead RG (1988) Low level laser therapy: a practical introduction. United Kingdom, Chichester

    Google Scholar 

  2. Karu T (1999) Primary and secondary mechanisms of action of visible to near-IR radiation on cells. J Photochem Photobiol, B 49:1–17. https://doi.org/10.1016/S1011-1344(98)00219-X

    Article  CAS  PubMed  Google Scholar 

  3. Karu TI, Kolyakov SF (2005) Exact action spectra for cellular responses relevant to phototherapy. Photomed Laser Ther 23:355–361. https://doi.org/10.1089/pho.2005.23.355

    Article  CAS  Google Scholar 

  4. de Freitas LF, Hamblin MR (2016) Proposed mechanisms of photobiomodulation or low-level light therapy. IEEE J Sel Top Quantum Electron 22. https://doi.org/10.1109/JSTQE.2016.2561201

  5. Henderson TA, Morries LD (2015) Near-infrared photonic energy penetration: can infrared phototherapy effectively reach the human brain? Neuropsychiatr Dis Treat 11:2191–2208. https://doi.org/10.2147/NDT.S78182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chen CH, Hung HS, Hsu SH (2008) Low-energy laser irradiation increases endothelial cell proliferation, migration, and eNOS gene expression possibly via PI3K signal pathway. Lasers Surg Med 40:46–54. https://doi.org/10.1002/lsm.20589

    Article  PubMed  Google Scholar 

  7. Maiman TH (1960) Stimulated optical radiation in ruby. Nature 187:493–494. https://doi.org/10.1038/187493a0

    Article  Google Scholar 

  8. Taylor R, Shklar G, Roeber F (1965) The effects of laser radiation on teeth, dental pulp, and oral mucosa of experimental animals. Oral Surg Oral Med Oral Pathol 19:786–795. https://doi.org/10.1016/0030-4220(65)90351-8

    Article  CAS  PubMed  Google Scholar 

  9. Lobene RR, Samuel Fine SM (1966) Interaction of laser radiation with oral hard tissues. J Prosthet Dent 16:589–597. https://doi.org/10.1016/0022-3913(66)90066-7

    Article  CAS  PubMed  Google Scholar 

  10. AlGhamdi KM, Kumar A, Moussa NA (2012) Low-level laser therapy: a useful technique for enhancing the proliferation of various cultured cells. Lasers Med Sci 27:237–249. https://doi.org/10.1007/s10103-011-0885-2

    Article  PubMed  Google Scholar 

  11. Pires Oliveira DA, de Oliveira RF, Zangaro RA, Soares CP (2008) Evaluation of low-level laser therapy of osteoblastic cells. Photomed Laser Surg 26:401–404. https://doi.org/10.1089/pho.2007.2101

    Article  PubMed  Google Scholar 

  12. Hamblin MR (2017) Mechanisms and applications of the anti-inflammatory effects of photobiomodulation. AIMS Biophys 4:337–361. https://doi.org/10.3934/biophy.2017.3.337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Prabhu V, Rao SB, Rao NB, Aithal KB, Kumar P, Mahato KK (2010) Development and evaluation of fiber optic probe-based helium-neon low-level laser therapy system for tissue regeneration–an in vivo experimental study. Photochem Photobiol 86:1364–1372. https://doi.org/10.1111/j.1751-1097.2010.00791.x

    Article  CAS  PubMed  Google Scholar 

  14. Reza B, Soheil N, Ehsan B, Kourosh S, Reza F (2021) Efficacy of photo bio-modulation therapy for pain relief and soft tissue wound healing after dental implant surgery: A double-blind randomized clinical trial. J Photochem Photobiol 8:100062. https://doi.org/10.1016/j.jpap.2021.100062

    Article  Google Scholar 

  15. Gur A, Sarac AJ, Cevik R, Altindag O, Sarac S (2004) Efficacy of 904 nm gallium arsenide low level laser therapy in the management of chronic myofascial pain in the neck: a double-blind and randomize-controlled trial. Lasers Surg Med 35:229–235. https://doi.org/10.1002/lsm.20082

    Article  PubMed  Google Scholar 

  16. Langella LG, Casalechi HL, Tomazoni SS et al (2018) Photobiomodulation therapy (PBMT) on acute pain and inflammation in patients who underwent total hip arthroplasty-a randomized, triple-blind, placebo-controlled clinical trial. Lasers Med Sci 33:1933–1940. https://doi.org/10.1007/s10103-018-2558-x

    Article  PubMed  Google Scholar 

  17. Zayed SM, Hakim AAA (2020) Clinical efficacy of photobiomodulation on dental implant osseointegration: a systematic review. Saudi J Med Med Sci 8:80–86. https://doi.org/10.4103/sjmms.sjmms_410_19

    Article  PubMed  PubMed Central  Google Scholar 

  18. Sourvanos D, Poon J, Lander B, Sarmiento H, Carroll J, Zhu TC, Fiorellini JP (2023) Improving titanium implant stability with photobiomodulation: a review and meta-analysis of irradiation parameters. Photobiomodul Photomed Laser Surg 41:93–103. https://doi.org/10.1089/photob.2022.0161

    Article  CAS  PubMed  Google Scholar 

  19. Poli PP, Jesus LK, Dayube URC et al (2022) An Evaluation of the effects of photobiomodulation therapy on the peri-Implant bone healing of implants with different surfaces: an in vivo study. Materials 15:4371. https://doi.org/10.3390/ma15134371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Magri AMP, Fernandes KR, Assis L et al (2015) Photobiomodulation and bone healing in diabetic rats: evaluation of bone response using a tibial defect experimental model. Lasers Med Sci 30:1949–1957. https://doi.org/10.1007/s10103-015-1789-3

    Article  PubMed  Google Scholar 

  21. Bai J, Li L, Kou N et al (2021) Low level laser therapy promotes bone regeneration by coupling angiogenesis and osteogenesis. Stem Cell Res Ther 12:1–18. https://doi.org/10.1186/s13287-021-02493-5

    Article  CAS  Google Scholar 

  22. Kawasaki K, Shimizu N (2000) Effects of low-energy laser irradiation on bone remodeling during experimental tooth movement in rats. Lasers Surg Med 26:282–291. https://doi.org/10.1002/(sici)1096-9101(2000)26:3%3c282::aid-lsm6%3e3.0.co;2-x

    Article  CAS  PubMed  Google Scholar 

  23. Hadjidakis DJ, Androulakis II (2006) Bone remodeling. Ann N Y Acad Sci 1092:385–396. https://doi.org/10.1196/annals.1365.035

    Article  CAS  PubMed  Google Scholar 

  24. Stein A, Benayahu D, Maltz L, Oron U (2005) Low-level laser irradiation promotes proliferation and differentiation of human osteoblasts in vitro. Photomed Laser Surg 23:161–166. https://doi.org/10.1089/pho.2005.23.161

    Article  CAS  PubMed  Google Scholar 

  25. Ninomiya T, Hosoya A, Nakamura H, Sano K, Nishisaka T, Ozawa H (2007) Increase of bone volume by a nanosecond pulsed laser irradiation is caused by a decreased osteoclast number and an activated osteoblasts. Bone 40:140–148. https://doi.org/10.1016/j.bone.2006.07.026

    Article  PubMed  Google Scholar 

  26. Ribeiro LNS, de Figueiredo FAT, da Silva Mira PC et al (2022) Low-level laser therapy (LLLT) improves alveolar bone healing in rats. Lasers Med Sci 37:961–969. https://doi.org/10.1007/s10103-021-03340-y

    Article  PubMed  Google Scholar 

  27. Standal T, Borset M, Sundan A (2004) Role of osteopontin in adhesion, migration, cell survival and bone remodeling. Exp Oncol 26:179–184

    CAS  PubMed  Google Scholar 

  28. Ingram RT, Clarke BL, Fisher LW, Fitzpatrick LA (1993) Distribution of noncollagenous proteins in the matrix of adult human bone: evidence of anatomic and functional heterogeneity. J Bone Miner Res 8:1019–1029. https://doi.org/10.1002/jbmr.5650080902

    Article  CAS  PubMed  Google Scholar 

  29. Hauschka PV, Lian JB, Cole DE, Gundberg CM (1989) Osteocalcin and matrix Gla protein: vitamin K-dependent proteins in bone. Physiol Rev 69:990–1047. https://doi.org/10.1152/physrev.1989.69.3.990

    Article  CAS  PubMed  Google Scholar 

  30. Khadra M, Lyngstadaas SP, Haanaes HR, Mustafa K (2005) Effect of laser therapy on attachment, proliferation and differentiation of human osteoblast-like cells cultured on titanium implant material. Biomaterials 26:3503–3509. https://doi.org/10.1016/j.biomaterials.2004.09.033

    Article  CAS  PubMed  Google Scholar 

  31. Zhou Y, Sun F, Zhang Z et al (2023) Influence of Er: YAG laser irradiation on the outcomes of alveolar ridge preservation at the infected molar sites: a randomized controlled trial. BMC Oral Health 23:1–12. https://doi.org/10.1186/s12903-023-02996-y

    Article  CAS  Google Scholar 

  32. Monea A, Beresescu G, Boeriu S, Tibor M, Popsor S, Antonescu DM (2015) Bone healing after low-level laser application in extraction sockets grafted with allograft material and covered with a resorbable collagen dressing: A pilot histological evaluation. BMC Oral Health 15:134. https://doi.org/10.1186/s12903-015-0122-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Boldrini C, de Almeida JM, Fernandes LA et al (2013) Biomechanical effect of one session of low-level laser on the bone-titanium implant interface. Lasers Med Sci 28:349–352. https://doi.org/10.1007/s10103-012-1167-3

    Article  PubMed  Google Scholar 

  34. Lopes CB, Pinheiro AL, Sathaiah S, Da Silva NS, Salgado MA (2007) Infrared laser photobiomodulation (lambda 830 nm) on bone tissue around dental implants: a Raman spectroscopy and scanning electronic microscopy study in rabbits. Photomed Laser Surg 25:96–101. https://doi.org/10.1089/pho.2006.2030

    Article  CAS  PubMed  Google Scholar 

  35. Khadra M, Ronold HJ, Lyngstadaas SP, Ellingsen JE, Haanaes HR (2004) Low-level laser therapy stimulates bone-implant interaction: an experimental study in rabbits. Clin Oral Implants Res 15:325–332. https://doi.org/10.1111/j.1600-0501.2004.00994.x

    Article  PubMed  Google Scholar 

  36. Maluf AP, Maluf RP, Brito Cda R, Franca FM, de Brito Jr RB (2010) Mechanical evaluation of the influence of low-level laser therapy in secondary stability of implants in mice shinbones. Lasers Med Sci 25:693–698. https://doi.org/10.1007/s10103-010-0778-9

    Article  PubMed  Google Scholar 

  37. Fernandes KR, Magri AMP, Kido HW et al (2017) Biosilicate/PLGA osteogenic effects modulated by laser therapy: In vitro and in vivo studies. J Photochem Photobiol B 173:258–265. https://doi.org/10.1016/j.jphotobiol.2017.06.002

    Article  CAS  PubMed  Google Scholar 

  38. Pinheiro ALB, Santos NRS, Oliveira PC et al (2013) The efficacy of the use of IR laser phototherapy associated to biphasic ceramic graft and guided bone regeneration on surgical fractures treated with miniplates: a Raman spectral study on rabbits. Lasers Med Sci 28:513–518. https://doi.org/10.1007/s10103-012-1096-1

    Article  PubMed  Google Scholar 

  39. Fangel R, Bossini PS, Renno AC et al (2011) Low-level laser therapy, at 60 J/cm2 associated with a Biosilicate® increase in bone deposition and indentation biomechanical properties of callus in osteopenic rats. J Biomed Opt 16:078001. https://doi.org/10.1117/1.3598847

    Article  CAS  PubMed  Google Scholar 

  40. Ross G, Ross A (2009) Photobiomodulation: an invaluable tool for all dental specialties. J Laser Dent 17:117–124

    Google Scholar 

  41. Goyal M, Makkar S, Pasricha S (2013) Low level laser therapy in dentistry. Int J Laser Dent 3:82–88. https://doi.org/10.5005/jp-journals-10022-1043

    Article  Google Scholar 

  42. Kotlow L (2009) Photobiomodulating lasers and children’s dental care. J Laser Dent 17:125–130

    Google Scholar 

  43. Carroll JD, Milward MR, Cooper PR, Hadis M, Palin WM (2014) Developments in low level light therapy (LLLT) for dentistry. Dent Mater 30:465–475. https://doi.org/10.1016/j.dental.2014.02.006

    Article  PubMed  Google Scholar 

  44. Moher D, Liberati A, Tetzlaff J, Altman DG, Group P (2010) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Int J Surg 8:336–341. https://doi.org/10.1016/j.ijsu.2010.02.007

    Article  PubMed  Google Scholar 

  45. Zahra SE, Elkasi AA, Eldin MS, Vandevska-Radunovic V (2009) The effect of low level laser therapy (LLLT) on bone remodelling after median diastema closure: A one year and half follow-up study. Orthodontic Waves 68:116–122. https://doi.org/10.1016/j.odw.2009.02.001

    Article  Google Scholar 

  46. Angeletti P, Pereira MD, Gomes HC, Hino CT, Ferreira LM (2010) Effect of low-level laser therapy (GaAlAs) on bone regeneration in midpalatal anterior suture after surgically assisted rapid maxillary expansion. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 109:e38-46. https://doi.org/10.1016/j.tripleo.2009.10.043

    Article  PubMed  Google Scholar 

  47. Romao MM, Marques MM, Cortes AR, Horliana AC, Moreira MS, Lascala CA (2015) Micro-computed tomography and histomorphometric analysis of human alveolar bone repair induced by laser phototherapy: a pilot study. Int J Oral Maxillofac Surg 44:1521–1528. https://doi.org/10.1016/j.ijom.2015.08.989

    Article  CAS  PubMed  Google Scholar 

  48. Zaky AA, El Shenawy HM, Harhsh TA, Shalash M, Awad NM (2016) Can low level laser therapy benefit bone regeneration in localized maxillary cystic defects? - a prospective randomized control trial. Open Access Maced J Med Sci 4:720–725. https://doi.org/10.3889/oamjms.2016.140

    Article  PubMed  PubMed Central  Google Scholar 

  49. Matys J, Swider K, Grzech-Lesniak K, Dominiak M, Romeo U (2019) Photobiomodulation by a 635nm diode laser on peri-implant bone: primary and secondary stability and bone density analysis-a randomized clinical trial. Biomed Res Int 2019:2785302. https://doi.org/10.1155/2019/2785302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Gulati P, Kumar M, Issar G, Thakral A (2020) Effect of low level laser therapy on crestal bone levels around dental implants-A pilot study. Clin Implant Dent Relat Res 22:739–746. https://doi.org/10.1111/cid.12957

    Article  PubMed  Google Scholar 

  51. Rosero KAV, Sampaio RMF, Deboni MCZ et al (2020) Photobiomodulation as an adjunctive therapy for alveolar socket preservation: a preliminary study in humans. Lasers Med Sci 35:1711–1720. https://doi.org/10.1007/s10103-020-02962-y

    Article  PubMed  Google Scholar 

  52. Arshad M, Ghanavati Z, Aminishakib P, Rasouli K, Shirani G (2021) Effect of light-emitting diode phototherapy on allograft bone after open sinus lift surgery: a randomized clinical trial (Concurrent Parallel). J Lasers Med Sci 12:e16. https://doi.org/10.34172/jlms.2021.16

    Article  PubMed  PubMed Central  Google Scholar 

  53. Križaj Dumić A, Pajk F, Olivi G (2021) The effect of post-extraction socket preservation laser treatment on bone density 4 months after extraction: Randomized controlled trial. Clin Implant Dent Relat Res 23:309–316. https://doi.org/10.1111/cid.12991

    Article  PubMed  PubMed Central  Google Scholar 

  54. Lubart R, Friedmann H, onitLavie R (2000) Photobiostimulation as a function of different wavelengths. Laser Ther 12:38–41. https://doi.org/10.5978/islsm.12.38

    Article  Google Scholar 

  55. Kushibiki T, Hirasawa T, Okawa S, Ishihara M (2015) Low Reactive Level Laser Therapy for Mesenchymal Stromal Cells Therapies. Stem Cells Int 2015:974864. https://doi.org/10.1155/2015/974864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Barbosa D, de Souza RA, Xavier M, da Silva FF, Arisawa EA, Villaverde AG (2013) Effects of low-level laser therapy (LLLT) on bone repair in rats: optical densitometry analysis. Lasers Med Sci 28:651–656. https://doi.org/10.1007/s10103-012-1125-0

    Article  PubMed  Google Scholar 

  57. Su CT, Chen CM, Chen CC, Wu JH (2020) Dose analysis of photobiomodulation therapy in stomatology. Evid Based Complement Alternat Med 2020:8145616. https://doi.org/10.1155/2020/8145616

    Article  PubMed  PubMed Central  Google Scholar 

  58. Su CT, Chiu FC, Ma SH, Wu JH (2022) Optimization of photobiomodulation dose in biological tissue by adjusting the focal point of lens. Photonics 9:350. https://doi.org/10.3390/photonics9050350

    Article  Google Scholar 

  59. Barbosa D, Villaverde AG, LoschiavoArisawa EA, de Souza RA (2014) Laser therapy in bone repair in rats: analysis of bone optical density. Acta Ortop Bras 22:71–74. https://doi.org/10.1590/1413-78522014220200438

    Article  PubMed  PubMed Central  Google Scholar 

  60. Batista JD, Sargenti-Neto S, Dechichi P, Rocha FS, Pagnoncelli RM (2015) Low-level laser therapy on bone repair: is there any effect outside the irradiated field? Lasers Med Sci 30:1569–1574. https://doi.org/10.1007/s10103-015-1752-3

    Article  PubMed  Google Scholar 

  61. Heiskanen V, Hamblin MR (2018) Photobiomodulation: lasers vs. light emitting diodes? Photochem Photobiol Sci 17:1003–1017. https://doi.org/10.1039/c8pp00176f

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Karu TI, Andreichuk T, Ryabykh T (1993) Changes in oxidative metabolism of murine spleen following diode laser (660–950nm) irradiation: effect of cellular composition and radiation parameters. Lasers Surg Med 13:453–462. https://doi.org/10.1002/lsm.1900130410

    Article  CAS  PubMed  Google Scholar 

  63. Park JB, Ahn SJ, Kang YG, Kim EC, Heo JS, Kang KL (2015) Effects of increased low-level diode laser irradiation time on extraction socket healing in rats. Lasers Med Sci 30:719–726. https://doi.org/10.1007/s10103-013-1402-6

    Article  PubMed  Google Scholar 

  64. da Silva RV, Camilli JA (2006) Repair of bone defects treated with autogenous bone graft and low-power laser. J Craniofac Surg 17:297–301. https://doi.org/10.1097/00001665-200603000-00017

    Article  PubMed  Google Scholar 

  65. da Fonseca GAMD, Cavalcanti MFXB, de Souza Maior JD et al (2022) Laser-photobiomodulation on titanium implant bone healing in rat model: comparison between 660-and 808-nm wavelength. Lasers Med Sci 37:2179–2184. https://doi.org/10.1007/s10103-021-03481-0

    Article  PubMed  Google Scholar 

  66. Cobb CM (2006) Lasers in periodontics: a review of the literature. J Periodontol 77:545–564. https://doi.org/10.1902/jop.2006.050417

    Article  CAS  PubMed  Google Scholar 

  67. Farkas JP, Hoopman JE, Kenkel JM (2013) Five parameters you must understand to master control of your laser/light-based devices. Aesthetic Surg J 33:1059–1064. https://doi.org/10.1177/1090820X13501174

    Article  Google Scholar 

Download references

Funding

This research received no external funding.

Author information

Authors and Affiliations

Authors

Contributions

J.R. Mi Le (Jie-Ren Mi Le) and C.T. Su (Chuan-Tsung Su) contributed to data preparation and collection, studies review, data analysis, and data interpretation. C.-T.S and J. H. Wu. contributed to idea formulation, reporting results, and the writing of the manuscript. Fu-Shan Jaw (F.S. Jaw) and C.T. Su contributed to review and editing. All authors have seen and approved the final version.

Corresponding author

Correspondence to Chuan-Tsung Su.

Ethics declarations

Ethics approval

Not applicable.

Conflict of interest

The author declares that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 22 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Le, JR.M., Wu, JH., Jaw, FS. et al. The effect of bone remodeling with photobiomodulation in dentistry: a review study. Lasers Med Sci 38, 265 (2023). https://doi.org/10.1007/s10103-023-03933-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10103-023-03933-9

Keywords

Navigation