Skip to main content

Advertisement

Log in

Laser treatment of benign melanocytic lesion: a review

  • Review Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

Treatment of pigmented lesions is one of the major challenges of laser and cosmetic practitioners. The most common pigmented lesions that are treated by lasers are melanocytic nevi, ephelides, solar lentigines, and café au lait macules. Melanin absorbs different wavelengths (500–1100 nm); thereby, treatment of various pigmented lesions requires the application of lasers with different wavelengths. Choosing the most appropriate type of laser depends on various factors such as the chromophore and the location of a specific lesion in the skin. In this paper, we aim to review the most efficient laser treatment protocols for each pigmented skin lesion and compare their efficacy in each part based on the previous studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tan OT (1994) Laser treatment method for removing pigement containing lesions from the skin of a living human. Google Patents

  2. Goldberg DJ (1997) Laser treatment of pigmented lesions. Dermatol Clin 15(3):397–407

    Article  CAS  PubMed  Google Scholar 

  3. Goldman L, Blaney DJ, Kindel DJ, Richfield D, Franke EK (1963) Pathology of the effect of the laser beam on the skin. Nature 197(4870):912–914

    Article  CAS  PubMed  Google Scholar 

  4. Goldman L (1965) Radiation from a Q-switched ruby laser, Effect of repeated impacts of power output of 10 megawatts on a tattoo of man. J Invest Derm 44:69–71

    Article  CAS  PubMed  Google Scholar 

  5. Ohshiro T, Maruyama Y (1983) The ruby and argon lasers in the treatment of naevi. Ann Acad Med Singapore 12(2 Suppl):388–395

    CAS  PubMed  Google Scholar 

  6. Goldman MP, Fitzpatrick RE, Ross EV, Kilmer SL, Weiss RA (2013) Lasers and energy devices for the skin: CRC Press Boca Raton

  7. Kilmer SL, Garden JM (2000) editors. Laser treatment of pigmented lesions and tattoos. Seminars in cutaneous medicine and surgery. WB Saunders

  8. Arora H, Falto‐Aizpurua L, Rajabi‐Estarabadi A, Nouri K (2019) Lasers for Pigmented Lesions. Pediatr Dermatol Surg. 241–56

  9. BukvićMokoš Z, Lipozenčić J, Čeović R, ŠtulhoferBuzina D, Kostović K (2010) Laser therapy of pigmented lesions: pro and contra. Acta Dermatovenerol Croat 18(3):185–189

    Google Scholar 

  10. Praetorius C, Sturm RA, Steingrimsson E (2014) Sun-induced freckling: ephelides and solar lentigines. Pigment Cell Melanoma Res 27(3):339–350

    Article  PubMed  Google Scholar 

  11. Ortonne J-P, Pandya AG, Lui H, Hexsel D (2006) Treatment of solar lentigines. J Am Acad Dermatol 54(5):S262–S271

    Article  PubMed  Google Scholar 

  12. Jang KA, Chung EC, Choi JH, Sung KJ, Moon KC, Koh JK (2000) Successful removal of freckles in Asian skin with a Q-switched alexandrite laser. Dermatol Surg 26(3):231–234

    Article  CAS  PubMed  Google Scholar 

  13. Wang C-C, Sue Y-M, Yang C-H, Chen C-K (2006) A comparison of Q-switched alexandrite laser and intense pulsed light for the treatment of freckles and lentigines in Asian persons: a randomized, physician-blinded, split-face comparative trial. J Am Acad Dermatol 54(5):804–810

    Article  PubMed  Google Scholar 

  14. Rashid T, Hussain I, Haider M, Haroon T (2002) Laser therapy of freckles and lentigines with quasi-continuous, frequency-doubled, Nd: YAG (532 nm) laser in Fitzpatrick skin type IV: a 24-month follow-up. J Cosmet Laser Ther 4(3):81–85

    Article  CAS  PubMed  Google Scholar 

  15. Kawada A, Shiraishi H, Asai M, Kameyama H, Sangen Y, Aragane Y et al (2002) Clinical improvement of solar lentigines and ephelides with an intense pulsed light source. Dermatol Surg 28(6):504–508

    PubMed  Google Scholar 

  16. Vejjabhinanta V, Elsaie ML, Patel SS, Patel A, Caperton C, Nouri K (2010) Comparison of short-pulsed and long-pulsed 532 nm lasers in the removal of freckles. Lasers Med Sci 25(6):901–906

    Article  PubMed  Google Scholar 

  17. Nelson JS, Applebaum J (1992) Treatment of superficial cutaneous pigmented lesions by melanin-specific selective photothermolysis using the Q-switched ruby laser. Ann Plast Surg 29(3):231–237

    Article  CAS  PubMed  Google Scholar 

  18. Ho S, Chan N, Yeung C, Shek S, Kono T, Chan H (2012) A retrospective analysis of the management of freckles and lentigines using four different pigment lasers on Asian skin. J Cosmet Laser Ther 14(2):74–80

    Article  CAS  PubMed  Google Scholar 

  19. Carpo BG, Grevelink JM, Grevelink SV, editors (1999) Laser treatment of pigmented lesions in children. Seminars in cutaneous medicine and surgery

  20. Tanaka Y, Tsunemi Y, Kawashima M (2016) Objective assessment of intensive targeted treatment for solar lentigines using intense pulsed light with wavelengths between 500 and 635 nm. Lasers Surg Med 48(1):30–35

    Article  PubMed  Google Scholar 

  21. Kawana S, Ochiai H, Tachihara R (2007) Objective evaluation of the effect of intense pulsed light on rosacea and solar lentigines by spectrophotometric analysis of skin color. Dermatol Surg 33(4):449–454

    CAS  PubMed  Google Scholar 

  22. Sasaya H, Kawada A, Wada T, Hirao A, Oiso N (2011) Clinical effectiveness of intense pulsed light therapy for solar lentigines of the hands. Dermatol Ther 24(6):584–586

    Article  PubMed  Google Scholar 

  23. Negishi K, Akita H, Matsunaga Y (2018) Prospective study of removing solar lentigines in Asians using a novel dual-wavelength and dual-pulse width picosecond laser. Lasers Surg Med 50(8):851–858

    Article  PubMed  Google Scholar 

  24. Vachiramon V, Iamsumang W, Triyangkulsri K (2018) Q-switched double frequency Nd: YAG 532-nm nanosecond laser vs. double frequency Nd: YAG 532-nm picosecond laser for the treatment of solar lentigines in Asians. Lasers Med Sci 33(9):1941–7

    Article  PubMed  Google Scholar 

  25. Vachiramon V, Panmanee W, Techapichetvanich T, Chanprapaph K (2016) Comparison of Q-switched Nd: YAG laser and fractional carbon dioxide laser for the treatment of solar lentigines in Asians. Lasers Surg Med 48(4):354–359

    Article  PubMed  Google Scholar 

  26. Ghaninejhadi H, Ehsani A, Edrisi L, Gholamali F, Akbari Z, Noormohammadpour P (2013) Solar lentigines: Evaluating pulsed dye laser (PDL) as an effective treatment option. J Lasers Med Sci 4(1):33

    PubMed  PubMed Central  Google Scholar 

  27. Abrusci V, Benzecry V (2017) Medium-sized nevus spilus of the neck treated with pulsed dye laser. Dermatol Ther 30(4):e12497

    Article  Google Scholar 

  28. Jha SK, Mendez MD (2020) Café au lait macules

  29. Belkin DA, Neckman JP, Jeon H, Friedman P, Geronemus RG (2017) Response to laser treatment of café au lait macules based on morphologic features. JAMA Dermatol 153(11):1158–1161

    Article  PubMed  PubMed Central  Google Scholar 

  30. Kim H-R, Ha J-M, Park M-S, Lee Y, Seo Y-J, Kim C-D et al (2015) A low-fluence 1064-nm Q-switched neodymium-doped yttrium aluminium garnet laser for the treatment of café-au-lait macules. J Am Acad Dermatol 73(3):477–483

    Article  PubMed  Google Scholar 

  31. Won KH, Lee YJ, Rhee DY, Chang SE (2016) Fractional 532-nm Q-switched Nd: YAG laser: one of the safest novel treatment modality to treat cafe-au-lait macules. J Cosmet Laser Ther 18(5):268–269

    Article  PubMed  Google Scholar 

  32. Gu T, Yuan J, Zhang Y, Li Y-H, Wu Y, Gao X-H et al (2021) A retrospective study of FQSRL and IPL in the treatment of café-au-lait macule. J Dermatol Treat 32(5):544–547

    Article  Google Scholar 

  33. Kim J, Hur H, Kim YR, Cho SB (2018) Treatment of café-au-lait macules with a high-fluenced 1064-nm Q-switched neodymium: yttrium aluminum garnet laser. J Cosmet Laser Ther 20(1):17–20

    Article  PubMed  Google Scholar 

  34. Baek JO, Park IJ, Lee KR, Ryu HR, Kim J, Lee S et al (2018) High-fluence 1064-nm Q-Switched Nd: YAG laser: Safe and effective treatment of café-au-lait macules in Asian patients. J Cosmet Dermatol 17(3):380–384

    Article  PubMed  Google Scholar 

  35. Zhang B, Chu Y, Xu Z, Sun Y, Li L, Han X et al (2019) Treatment of Cafe-Au-Lait spots using Q-switched Alexandrite laser: analysis of clinical characteristics of 471 children in Mainland China. Lasers Surg Med 51(8):694–700

    Article  PubMed  PubMed Central  Google Scholar 

  36. Artzi O, Mehrabi JN, Koren A, Niv R, Lapidoth M, Levi A (2018) Picosecond 532-nm neodymium-doped yttrium aluminium garnet laser—a novel and promising modality for the treatment of café-au-lait macules. Lasers Med Sci 33(4):693–697

    Article  PubMed  Google Scholar 

  37. Rasi A, Berenji Ardestani H, Tabaie SM (2014) Hypertrichosis is not so prevalent in Becker’s nevus: analysis of 47 cases. International Scholarly Research Notices

  38. Zhong Y, Yang B, Huang L, Elias PM, Man M-Q (2019) Lasers for Becker’s nevus. Lasers Med Sci 34(6):1071–1079

    Article  PubMed  PubMed Central  Google Scholar 

  39. Happle R, Koopman RJ (1997) Becker nevus syndrome. Am J Med Genet 68(3):357–361

    Article  CAS  PubMed  Google Scholar 

  40. Person JR, Longcope C (1984) Becker’s nevus: an androgen-mediated hyperplasia with increased androgen receptors. J Am Acad Dermatol 10(2):235–238

    Article  CAS  PubMed  Google Scholar 

  41. Al-Saif F, Al-Mekhadab E, Al-Saif H (2017) Efficacy and safety of short-pulse erbium: yttrium aluminum garnet laser treatment of Becker’s nevus in Saudi patients: a pilot study. Int J Health Sci 11(3):14

    Google Scholar 

  42. Trelles M, Allones I, Moreno-Arias G, Vélez M (2005) Becker’s naevus: a comparative study between erbium: YAG and Q-switched neodymium: YAG; clinical and histopathological findings. Br J Dermatol 152(2):308–313

    Article  CAS  PubMed  Google Scholar 

  43. Choi JE, Kim JW, Seo SH, Son SW, Ahn HH, Kye YC (2009) Treatment of Becker’s nevi with a long-pulse alexandrite laser. Dermatol Surg 35(7):1105–1108

    Article  CAS  PubMed  Google Scholar 

  44. Nanni CA, Alster TS (1998) Case report: treatment of a Becker’s nevus using a 694-ntn long-pulsed ruby laser. Dermatol Surg 24(9):1032–1034

    Article  CAS  PubMed  Google Scholar 

  45. Glaich AS, Goldberg LH, Dai T, Kunishige JH, Friedman PM (2007) Fractional resurfacing: a new therapeutic modality for Becker’s nevus. Arch Dermatol 143(12):1488–1490

    Article  PubMed  Google Scholar 

  46. Meesters AA, Wind BS, Kroon MW, Wolkerstorfer A, van der Veen JW, Nieuweboer-Krobotová L et al (2011) Ablative fractional laser therapy as treatment for Becker nevus: a randomized controlled pilot study. J Am Acad Dermatol 65(6):1173–1179

    Article  PubMed  Google Scholar 

  47. Wu P-R, Liu L-J, Zhang Y-X, Liu Y, Lin X-X, Ma G (2021) Intense pulsed light treatment for Becker’s nevus. J Dermatol Treat 32(3):334–339

    Article  Google Scholar 

  48. Tse Y, Levine VJ, McClain SA, Ashinoff R (1994) The removal of cutaneous pigmented lesions with the Q-switched ruby laser and the Q-switched neodymium: yttrium-aluminum-garnet laser: a comparative study. J Dermatol Surg Oncol 20(12):795–800

    Article  CAS  PubMed  Google Scholar 

  49. Chawvavanich P, Rojanamatin J (2008) Treatment of Becker’s nevus. Comparison between intense pulsed light and frequency-double Q switch Nd: YAG laser. Thai J Dermatol 24:177–84

    Google Scholar 

  50. Roh MR, Eliades P, Gupta S, Tsao H (2015) Genetics of melanocytic nevi. Pigment Cell Melanoma Res 28(6):661–672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Levy R, Lara-Corrales I (2016) Melanocytic nevi in children: a review. Pediatr Ann 45(8):e293–e298

    Article  PubMed  Google Scholar 

  52. Rongioletti F, Ball RA, Marcus R, Barnhill RL (2000) Histopathological features of flexural melanocytic nevi: a study of 40 cases. J Cutan Pathol 27(5):215–217

    Article  CAS  PubMed  Google Scholar 

  53. Bauer J, Garbe C (2003) Acquired melanocytic nevi as risk factor for melanoma development. A comprehensive review of epidemiological data. Pigment Cell Res 16(3):297–306

    Article  PubMed  Google Scholar 

  54. Bogdan I, Smolle J, Kerl H, Burg G, Böni R (2003) Melanoma ex naevo: a study of the associated naevus. Melanoma Res 13(2):213–217

    Article  PubMed  Google Scholar 

  55. Woltsche N, Schmid-Zalaudek K, Deinlein T, Rammel K, Hofmann-Wellenhof R, Zalaudek I (2017) Abundance of the benign melanocytic universe: dermoscopic–histopathological correlation in nevi. J Dermatol 44(5):499–506

    Article  PubMed  Google Scholar 

  56. Skender-Kalnenas TM, English DR, Heenan PJ (1995) Benign melanocytic lesions: risk markers or precursors of cutaneous melanoma? J Am Acad Dermatol 33(6):1000–1007

    Article  CAS  PubMed  Google Scholar 

  57. Holly EA, Kelly JW, Shpall SN, Chiu S-H (1987) Number of melanocytic nevi as a major risk factor for malignant melanoma. J Am Acad Dermatol 17(3):459–468

    Article  CAS  PubMed  Google Scholar 

  58. Alshami MA (2014) Long-pulsed 532-nm Nd: YAG laser treatment for small acquired melanocytic nevi in a single session: an 8-year study on 350 Yemeni patients. J Cosmet Laser Ther 16(1):14–20

    Article  PubMed  Google Scholar 

  59. Lee SE, Choi JY, Hong KT, Lee KR (2015) Treatment of acquired and small congenital melanocytic nevi with combined Er: YAG laser and long-pulsed alexandrite laser in Asian skin. Dermatol Surg 41(4):473–480

    Article  CAS  PubMed  Google Scholar 

  60. Al-Hadithy N, Al-Nakib K, Quaba A (2012) Outcomes of 52 patients with congenital melanocytic naevi treated with ultrapulse carbon dioxide and frequency doubled Q-switched Nd-Yag laser. J Plast Reconstr Aesthet Surg 65(8):1019–1028

    Article  PubMed  Google Scholar 

  61. Tromberg J, Bauer B, Benvenuto-Andrade C, Marghoob AA (2005) Congenital melanocytic nevi needing treatment. Dermatol Ther 18(2):136–150

    Article  PubMed  Google Scholar 

  62. Liu Y, Zeng W, Li D, Wang W, Liu F (2018) A retrospective analysis of the clinical efficacies and recurrence of Q-switched Nd: YAG laser treatment of nevus of Ota in 224 Chinese patients. J Cosmet Laser Ther 20(7–8):410–414

    Article  PubMed  Google Scholar 

  63. Redkar NN, Rawat KJ, Warrier S, Jena A (2016) Nevus of Ota. J Assoc Physicians India 64(4):70

    PubMed  Google Scholar 

  64. Mishima Y, Mevorah B (1961) Nevus Ota and nevus Ito in American negroes. J Investig Dermatol 36(2):133–154

    Article  CAS  PubMed  Google Scholar 

  65. Liu J, Ball S (1991) Nevus of Ota with glaucoma: report of three cases. Ann Ophthalmol 23(8):286–289

    CAS  PubMed  Google Scholar 

  66. Suh DH, Hwang JH, Lee HS, Youn JI, Kim PM (2000) Clinical features of Ota’s naevus in Koreans and its treatment with Q-switched alexandrite laser. Clin Exp Dermatol Clin Dermatol 25(4):269–273

    Article  CAS  Google Scholar 

  67. Hartmann LC, Oliver GF, Winkelmann RK, Colby TV, Sundt TM Jr, O’neill BP (1989) Blue nevus and nevus of Ota associated with dural melanoma. Cancer 64(1):182–186

    Article  CAS  PubMed  Google Scholar 

  68. Shaffer D, Walker K, Weiss G (1992) Malignant melanoma in a Hispanic male with nevus of Ota. Dermatology 185(2):146–150

    Article  CAS  PubMed  Google Scholar 

  69. Lu Z, Chen J, Wang X, Fang L, Jiao S, Huang W (2000) Effect of Q-switched alexandrite laser irradiation on dermal melanocytes of nevus of Ota. Chin Med J 113(01):49–52

    CAS  PubMed  Google Scholar 

  70. Levin MK, Ng E, Bae YSC, Brauer JA, Geronemus RG (2016) Treatment of pigmentary disorders in patients with skin of color with a novel 755 nm picosecond, Q-switched ruby, and Q-switched Nd: YAG nanosecond lasers: a retrospective photographic review. Lasers Surg Med 48(2):181–187

    Article  PubMed  Google Scholar 

  71. Chan JCy, Shek SYn, Kono T, Yeung CK, Chan HHl (2016) A retrospective analysis on the management of pigmented lesions using a picosecond 755-nm alexandrite laser in Asians. Lasers Surg Med 48(1):23–9

    Article  PubMed  Google Scholar 

  72. Alegre-Sanchez A, Jiménez-Gómez N, Moreno-Arrones ÓM, Fonda-Pascual P, Pérez-García B, Jaén-Olasolo P et al (2018) Treatment of flat and elevated pigmented disorders with a 755-nm alexandrite picosecond laser: clinical and histological evaluation. Lasers Med Sci 33(8):1827–1831

    Article  PubMed  Google Scholar 

  73. Rani S, Sardana K (2019) Variables that predict response of nevus of Ota to lasers. J Cosmet Dermatol 18(2):464–468

    Article  PubMed  Google Scholar 

  74. Belkin DA, Jeon H, Weiss E, Brauer JA, Geronemus RG (2018) Successful and safe use of Q-switched lasers in the treatment of nevus of Ota in children with phototypes IV–VI. Lasers Surg Med 50(1):56–60

    Article  PubMed  Google Scholar 

  75. Sakio R, Ohshiro T, Sasaki K, Ohshiro T (2018) Usefulness of picosecond pulse alexandrite laser treatment for nevus of Ota. Laser Therapy 27(4):251–255

    Article  PubMed  PubMed Central  Google Scholar 

  76. Yu W, Zhu J, Yu W, Lyu D, Lin X, Zhang Z (2018) A split-face, single-blinded, randomized controlled comparison of alexandrite 755-nm picosecond laser versus alexandrite 755-nm nanosecond laser in the treatment of acquired bilateral nevus of Ota–like macules. J Am Acad Dermatol 79(3):479–486

    Article  PubMed  Google Scholar 

  77. Ge Y, Yang Y, Guo L, Zhang M, Wu Q, Zeng R et al (2020) Comparison of a picosecond alexandrite laser versus a Q-switched alexandrite laser for the treatment of nevus of Ota: a randomized, split-lesion, controlled trial. J Am Acad Dermatol 83(2):397–403

    Article  PubMed  Google Scholar 

  78. Ferguson RE Jr, Vasconez HC (2005) Laser treatment of congenital nevi. J Craniofac Surg 16(5):908–914

    Article  PubMed  Google Scholar 

  79. Johr RH, Binder M (2000) Management of nevus spilus—a better way. Pediatr Dermatol 17(6):491–492

    Article  CAS  PubMed  Google Scholar 

  80. Patel PD, Mohan GC, Bhattacharya T, Patel RA, Tsoukas M (2019) Pediatric laser therapy in pigmented conditions. Am J Clin Dermatol 20(5):647–655

    Article  PubMed  Google Scholar 

  81. Kagami S, Asahina A, Watanabe R, Mimura Y, Shirai A, Hattori N et al (2007) Treatment of 153 Japanese patients with Q-switched alexandrite laser. Lasers Med Sci 22(3):159–163

    Article  PubMed  Google Scholar 

  82. Grevelink JM, González S, Bonoan R, Vibhagool C, Gonzalez E (1997) Treatment of nevus spilus with the Q-switched ruby laser. Dermatol Surg 23(5):365–369

    Article  CAS  PubMed  Google Scholar 

  83. Abrusci V, Benzecry V (2016) Pulsed dye laser treatment of multiple common acquired melanocytic nevi: a novel approach. Dermatol Surg 42(7):914–917

    Article  CAS  PubMed  Google Scholar 

  84. Gold MH, Foster TD, Bell MW (1999) Nevus spilus successfully treated with an intense pulsed light source. Dermatol Surg Off Pub Am Soc Dermatol Surg [et al] 25(3):254–255

    CAS  Google Scholar 

  85. Moreno-Arias G, Bulla F, Vilata-Corell J, Camps-Fresneda A (2001) Treatment of widespread segmental nevus spilus by Q-switched Alexandrite laser (755 nm, 100 nsec). Dermatol Surg 27(9):841–844

    CAS  PubMed  Google Scholar 

  86. Nanni CA, Alster T (1998) Treatment of a Becker’s nevus using a 694-ntn long-pulsed ruby laser. Dermatol Surg 24(9):1032–1034

    Article  CAS  PubMed  Google Scholar 

  87. Rosenbach A, Williams CM, Alster TS (1997) Comparison of the Q-switched alexandrite (755 nm) and Q-switched Nd: YAG (1064 nm) lasers in the treatment of benign melanocytic nevi. Dermatol Surg 23(4):239–244

    Article  CAS  PubMed  Google Scholar 

  88. Yadav S, Saxena A, Capoor MR, Ramesh V (2013) Treatment of nevus spilus with Q switched Nd: YAG laser. Indian J Dermatol Venereol Leprol 79(2):244

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sahar Dadkhahfar.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Araghi, F., Ohadi, L., Moravvej, H. et al. Laser treatment of benign melanocytic lesion: a review. Lasers Med Sci 37, 3353–3362 (2022). https://doi.org/10.1007/s10103-022-03642-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-022-03642-9

Keywords

Navigation