Skip to main content
Log in

Assessment of tissue pathology using optical polarimetry

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

Optical polarimetry have been extensively used for the non-invasive assessment of biological tissues. However, the knowledge regarding differences in polarimetric signatures of different tissue pathologies is very scattered, confounding the deduction of a global trend of the polarimetric variables for healthy and pathological tissues. The purpose of this study was to bridge this gap. We conducted a rigorous online survey to collect all published studies that report the two most common polarimetric variables (i.e., depolarization and retardance) for any type of tissue pathology. A total of 101 studies describing the polarimetric assessment of tissues were collected, wherein 253 (i.e., nhuman = 149, nanimal = 104) different type of tissues were optically characterized. Most tissue samples (172/253) were investigated in ex vivo settings. The data showed 32 different types of tissues pathologies, where the most common pathology was cancer and its subtypes. The skin tissues were the most frequently explored tissues, followed by tissue samples from breast, colon, liver, and cervix. Although differences in polarimetric signatures of different tissue pathologies were summarized from the included studies, generalization of the results was hindered by the presentation of polarimetric data in a non-uniform format. The analyses presented in this study may provide an important reference for future polarimetric studies that conduct optical assessment of tissues at greater depth, particularly in the context of optical biopsy/digital staining.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

References

  1. Hillman H (2000) Limitations of clinical and biological histology. Med Hypotheses 54:553–564

    CAS  PubMed  Google Scholar 

  2. Cardiff RD, Gregg JP, Miller JW, Axelrod DE, Borowsky AD (2006) Histopathology as a predictive biomarker: strengths and limitations. J Nutr 136:2673–2675

    Google Scholar 

  3. Saikia B, Gupta K, Saikia UN (2008) The modern histopathologist: In the Changing face of time. Diagn Pathol 3:25

    PubMed  PubMed Central  Google Scholar 

  4. Ahmad I, Khaliq A, Iqbal M, Khan S (2020) Mueller matrix polarimetry for characterization of skin tissue samples: a review. Photodiagnosis and Photodynamic Therapy 30:101708

    CAS  PubMed  Google Scholar 

  5. Iqbal M, Gul B, Khan S, Ashraf S, Ahmad I (2021) Isolating individual polarization effects from the Mueller matrix: comparison of two non-decomposition techniques. Biomed Opt Express 12:3743

    PubMed  PubMed Central  Google Scholar 

  6. Iqbal M, Khan S, Gul B, Ahmad M, Ahmad I (2021) Comparison of Mueller matrix differential decomposition and transformation. Biomed Signal Process Control 69:102815

    Google Scholar 

  7. Shukla, P., Awasthi, A., Pandey, P.K. and Pradhan, A. (2008) Discrimination of normal and dysplasia in cervix tissue by Mueller matrix analysis. SPIE Proceedings Biomedical Applications of Light Scattering II, 686417.

  8. Pierangelo A, Nazac A, Benali A, Validire P, Cohen H, Novikova T, Ibrahim BH, Manhas S, Fallet C, Antonelli R, Martino A (2013) Polarimetric imaging of uterine cervix : A Case Study. Opt Express 21:281–289

    Google Scholar 

  9. Turzhitsky VM, Gomes AJ, Kim YL, Liu Y, Kromine A, Rogers JD, Jameel M, Roy HK, Backman V (2008) Measuring mucosal blood supply in vivo with a polarization gating probe. Appl Opt 47:6046–6057

    PubMed  PubMed Central  Google Scholar 

  10. Ellingsen PG, Martin L, Aas S, Hagen VS, Kumar R, Lilledahl MB, Kildemo M (2014) Mueller matrix three-dimensional directional imaging of collagen fibers. J Biomed Opt 19:026002

    PubMed  Google Scholar 

  11. Pierangelo A, Manhas S, Benali A, Fallet C, Totobenazara J-L, Antonelli M-R, Novikova T, Gayet B, De Martino A, Validire P (2013) Multispectral Mueller polarimetric imaging detecting residual cancer and cancer regression after neoadjuvant treatment for colorectal carcinomas. J Biomed Opt 18:046014

    PubMed  Google Scholar 

  12. Arikawa H, Shinohara N, Takahashi H, Kanie T, Fujii K (2010) Light transmittance characteristics and refractive indices of light-activated pit and fissure sealants. Dental Materials J 29:89–96

    CAS  Google Scholar 

  13. Ahmad I, Gribble A, Ikram M, Pop M, Vitkin A (2016) Polarimetric assessment of healthy and radiofrequency ablated porcine myocardial tissue. J Biophotonics 9:750–759

    CAS  PubMed  Google Scholar 

  14. Ahmad I, Gribble A, Murtza I, Ikram M, Pop M, Vitkin A (2017) Polarization image segmentation of radiofrequency ablated porcine myocardial tissue. PLOS ONE 12:e0157173

    Google Scholar 

  15. Ahmad I (2017) Review of the emerging role of optical polarimetry in characterization of pathological myocardium. Journal of biomedical optics 22:100901

    Google Scholar 

  16. Chang Y, Gao W (2021) Directly obtaining the polarization properties from measured Mueller matrices. Optics and Lasers in Engineering 139:106472

    Google Scholar 

  17. Rao AVG, Mallesh KS, Sudha (1998) On the algebraic characterization of a Mueller matrix in polarization optics. II. Necessary and sufficient conditions for Jones-derived Mueller matrices. J Mod Opt 45:989–999

    Google Scholar 

  18. Rao AVG, Mallesh KS, Sudha (1998) On the algebraic characterization of a Mueller matrix in polarization optics. I. Identifying a Mueller matrix from its N matrix. J Mod Opt 45:955–987

    Google Scholar 

  19. Jacques S, Ramella-Roman JC, Lee K (2002) Imaging skin pathology with polarized light. J Biomed Opt 7:329–340

    PubMed  Google Scholar 

  20. Pierangelo A, Benali A, Antonelli M-R, Novikova T, Validire P, Gayet B, De Martino A (2011) Ex-vivo characterization of human colon cancer by Mueller polarimetric imaging. Opt Express 19:1582–1593

    CAS  PubMed  Google Scholar 

  21. He H, Zeng N, Sun M, Guo Y, Wu J, Liu S (2014) Mueller matrix polarimetry for differentiating characteristic features of cancerous tissues. Journal of Biomedical Optics 19:076013

    Google Scholar 

  22. Pierangelo A, Manhas S, Benali A, Fallet C, Antonelli M-R, Novikova T, Gayet B, Validire P, De Martino A (2012) Ex vivo photometric and polarimetric multilayer characterization of human healthy colon by multispectral Mueller imaging. J Biomed Opt 17:066009

    PubMed  Google Scholar 

  23. He H, Sun M, Zeng N, Du E, Liu S, Guo Y, Wu J, He Y, Ma H (2014) Mapping local orientation of aligned fibrous scatterers for cancerous tissues using backscattering Mueller matrix imaging. J Biomed Opt 19:106007

    PubMed  Google Scholar 

  24. Ma H, Zeng N, Liu S, Li M, Wang Y, Chang J, He H (2015) Differentiating characteristic microstructural features of cancerous tissues using Mueller matrix microscope. Micron 79:8–15

    PubMed  Google Scholar 

  25. Liu T, Lu M, Chen B, Zhong Q, Li J, He H, Mao H, Ma H (2019) Distinguishing structural features between Crohn’s disease and gastrointestinal luminal tuberculosis using Mueller matrix derived parameters. Journal of Biophotonics 12:e201900151

    PubMed  Google Scholar 

  26. Wang Y, He H, Chang J, He C, Liu S, Li M, Zeng N, Wu J, Ma H (2016) Mueller matrix microscope: a quantitative tool to facilitate detections and fibrosis scorings of liver cirrhosis and cancer tissues. J Biomed Opt 21:071112

    Google Scholar 

  27. Dong Y, Qi J, He H, He C, Liu S, Wu J, Elson DS, Ma H (2017) Quantitatively characterizing the microstructural features of breast ductal carcinoma tissues in different progression stages by Mueller matrix microscope. Biomed Opt Express 8:3643–3655

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Wood MFG, Vitkin IA, Wallenburg MA, Li S, Weisel RD, Wilson BC (2021) Polarization birefringence measurements for characterizing the myocardium, including healthy, infarcted, and stem-cell-regenerated tissues. J Biomed Opt 15:1–9

    Google Scholar 

  29. Li P, Lee HR, Chandel S, Lotz C, Groeber-Becker FK, Dembski S, Ossikovski R, Ma H, Novikova T (2020) Analysis of tissue microstructure with Mueller microscopy: logarithmic decomposition and Monte Carlo modeling. J Biomed Opt 25:015002

    PubMed Central  Google Scholar 

  30. Smith MH, Burke PD, Lompado A, Tanner EA, Hillman LW (2000) Mueller matrix imaging polarimetry in dermatology. Proceed SPIE 3911:210–216

    Google Scholar 

  31. Smith MH (2001) Interpreting Mueller matrix images of tissues. Laser-Tissue Interaction XII: Photochemical, Photothermal, and Photomechanical 4257:82–89

    Google Scholar 

  32. Qi J, He H, Lin J, Dong Y, Chen D, Ma H, Elson DS (2018) Assessment of tissue polarimetric properties using Stokes polarimetric imaging with circularly polarized illumination. Journal of Biophotonics 11:e201700139

    PubMed  Google Scholar 

  33. Du E, He H, Zeng N, Guo Y, Sun M, Ma H, Liu S, Li M (2014) Mueller polarimetry for the detection of cancers. Advanced Biomedical and Clinical Diagnostic Systems XII 8935:89350S

    Google Scholar 

  34. Dremin VV, Anin D, Sieryi O, Borovkova MA, Näpänkangas J, Meglinski IV, Bykov AV (2020) Imaging of early stage breast cancer with circularly polarized light. Proc SPIE 11363:1136304

    Google Scholar 

  35. Ivanov D, Borisova E, Genova T, Nedelchev L, Nazarova D (2019) Tissue polarimetric discrimination analysis of skin and colon histological samples. AIP Conf Proc 2075:10–15

    Google Scholar 

  36. He H, Zeng N, Li D, Liao R, Ma H (2012) Quantitative Mueller matrix polarimetry techniques for biological tissues. J Innovative Opt Health Sci 5:1–7

    Google Scholar 

  37. Shen Y, Huang R, He H, Liu S, Dong Y, Wu J, Ma H (2021) Comparative study of the influence of imaging resolution on linear retardance parameters derived from the Mueller matrix. Biomed Opt Express 12:211

    PubMed  Google Scholar 

  38. Dong Y, Liu S, Shen Y, He H, Ma H (2020) Probing variations of fibrous structures during the development of breast ductal carcinoma tissues via Mueller matrix imaging. Biomed Opt Express 11:4960

    PubMed  PubMed Central  Google Scholar 

  39. Sheng W, Li W, Qi J, Liu T, He H, Dong Y, Liu S, Jian W, Elson DS, Hui M (2019) Quantitative analysis of 4 × 4 Mueller matrix transformation parameters for biomedical imaging. Photonics 34:1–14

    Google Scholar 

  40. Vizet J, Rehbinder J, Deby S, Roussel S, Nazac A, Soufan R, Genestie C, Haie-Meder C, Fernandez H, Moreau F, Pierangelo A (2017) In vivo imaging of uterine cervix with a Mueller polarimetric colposcope. Sci Rep 7:2471

    PubMed  PubMed Central  Google Scholar 

  41. Soni J, Purwar H, Lakhotia H, Chandel S, Banerjee C, Kumar U, Ghosh N (2013) Quantitative fluorescence and elastic scattering tissue polarimetry using an eigenvalue calibrated spectroscopic Mueller matrix system. Opt Express 21:15475

    CAS  PubMed  Google Scholar 

  42. Jagtap J, Chandel S, Das N, Soni J, Chatterjee S, Pradhan A, Ghosh N (2014) Quantitative Mueller matrix fluorescence spectroscopy for precancer detection. Opt Lett 39:243

    CAS  PubMed  Google Scholar 

  43. Das NK, Dey R, Chakraborty S, Panigrahi PK, Meglinski I, Ghosh N (2018) Quantitative assessment of submicron scale anisotropy in tissue multifractality by scattering Mueller matrix in the framework of born approximation. Optics Communications 413:172–178

    CAS  Google Scholar 

  44. Pradhan A, Zaffar M (2018) Spatial autocorrelation of Mueller matrix images as indicator of cervical pre-cancer detection. Proceed SPIE - Int Soc Opt Eng 10820:102

    Google Scholar 

  45. Das NK, Dey R, Ghosh N (2016) Mueller matrix approach for probing multifractality in the underlying anisotropic connective tissue. J Biomed Opt 21:095004

    Google Scholar 

  46. He C, He H, Li X, Chang J, Wang Y, Liu S, Zeng N, He Y, Ma H (2015) Quantitatively differentiating microstructures of tissues by frequency distributions of Mueller matrix images. J Biomed Opt 20:105009

    PubMed  Google Scholar 

  47. Zhou J, He H, Wang Y, Ma H (2017) Identification and quantitative evaluation of the fiber structure in the pathological tissue using Mueller matrix microscope. Opt Tomograph Spectroscopy of Tissue XII 10059:1005926

    Google Scholar 

  48. Chue-Sang J, Holness N (2018) Use of Mueller matrix colposcopy in the characterization of cervical collagen anisotropy. J Biomed Opt 23:121605

    PubMed Central  Google Scholar 

  49. Ushenko VA, Hogan BT, Dubolazov A, Grechina AV, Boronikhina TV, Gorsky M, Ushenko AG, Ushenko YO, Bykov A, Meglinski I (2021) Embossed topographic depolarisation maps of biological tissues with different morphological structures. Sci Rep 11:1–9

    Google Scholar 

  50. Zhou J, He H, Wang Y, Ma H (2016) Stage scoring of liver fibrosis using Mueller matrix microscope. Opt Health Care Biomed Opt VII 10024:100240M

    Google Scholar 

  51. Wang Y, Zhou J, Chang J, He H, Ma H (2016) Quantitative Mueller matrix microscope: theory, equipment, calibration, and applications. Dynamics and Fluctuations in Biomedical Photonics XIII 9707:97070E

    Google Scholar 

  52. Ilyov S, Ivanov D, Genova T, Mircheva V, Zaharieva L, Kolev B, Vladimirov B, Valkov H, Mazumder N, Sindhoora K, Semyachkina-Glushkovskaya O, Avramov L, Borisova E (2021) Reflectance polarization ex vivo measurements of gastrointestinal carcinoma lesions for cancer diagnostics. J Phys: Conference Series 1859:012041

    Google Scholar 

  53. Peyvasteh M, Tryfonyuk L, Ushenko V, Syvokorovskaya AV, Dubolazov A, Vanchulyak O, Ushenko A, Ushenko Y, Gorsky M, Sidor M, Tomka Y, Soltys I, Bykov A, Meglinski I (2020) 3D Mueller-matrix-based azimuthal invariant tomography of polycrystalline structure within benign and malignant soft-tissue tumours. Laser Phys Lett 17:115606

    Google Scholar 

  54. Bykov, A., Popov, A., Novikova, T., Doronin, A. and Meglinski, I. (2014) Polarization sensitive optical biopsy with diffusely reflected polarized light. Optics InfoBase Conference Papers, 1–2.

  55. Novikova T, Pierangelo A, Manhas S, Benali A, Validire P, Gayet B, De Martino A (2013) The origins of polarimetric image contrast between healthy and cancerous human colon tissue. App Phys Lett 102:241103

    Google Scholar 

  56. Chang J, Zeng N, He H, Ma H (2014) Removing the polarization artifacts in Mueller matrix images recorded with a GRIN lens: a simulation approach. Twelfth Int Conference Photonics Imaging Biol Med (PIBM 2014) 9230:923008

    Google Scholar 

  57. Pierangelo A, Manhas S, Benali A, Antonelli MR, Novikova T, Validire P, Gayet B, De Martino A (2011) Use of Mueller polarimetric imaging for the staging of human colon cancer. Opt Biopsy IX 7895:78950E

    Google Scholar 

  58. Schucht P, Lee HR, Mezouar HM, Hewer E, Raabe A, Murek M, Zubak I, Goldberg J, Kövari E, Pierangelo A, Novikova T (2020) Visualization of white matter fiber tracts of brain tissue sections with wide-field imaging Mueller polarimetry. IEEE Trans Med Imaging 39:4376–4382

    PubMed  Google Scholar 

  59. He H, Liao R, Zeng N, Li P, Chen Z, Liu X, Ma H (2019) Mueller matrix polarimetry—an emerging new tool for characterizing the microstructural feature of complex biological specimen. J Lightwave Technol 37:2534–2548

    CAS  Google Scholar 

  60. Tueni N, Vizet J, Genet M, Pierangelo A, Allain JM (2020) Microstructural deformation observed by Mueller polarimetry during traction assay on myocardium samples. Sci Rep 10:1–12

    Google Scholar 

  61. Fanjul-Vélez, F., Arce-Diego, J.-L., Romanov, O.G., Tolstik, A.L. and Ormachea, O. (2007) 2D Mueller matrix approach for tissue complete polarization characterization. SPIE Proc. International Conference on Lasers, Applications, and Technologies, 67341H.

  62. Dong Y, He H, Sheng W, Wu J, Ma H (2017) A quantitative and non-contact technique to characterise microstructural variations of skin tissues during photo-damaging process based on Mueller matrix polarimetry. Sci Rep 7:1–10

    Google Scholar 

  63. Chen D, Zeng N, Xie Q, He H, Tuchin VV, Ma H (2017) Mueller matrix polarimetry for characterizing microstructural variation of nude mouse skin during tissue optical clearing. Biomed Opt Express 8:3559

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Mora-Núñez A, Castillejos Y, García-Torales G, Martínez-Ponce G (2013) Diffuse reflectance spectroscopy and optical polarization imaging of in vivo biological tissue. SPIE Proc. 8th Iberoamerican Optics Meeting and 11th Latin American Meeting on Optics Lasers and Applications 8785:8785D7

    Google Scholar 

  65. Mora-Núñez, A., Martinez-Ponce, G. and Garcia-Torales, G. (2015) Optical characterization of murine model’s in-vivo skin using Mueller matrix polarimetric imaging. SPIE Proc. Biophotonics Japan, 97921J.

  66. Li D, He H, Zeng N, Du E, Liao R, He Y, Ma H, Liu S, Li M (2013) Polarization imaging and scattering model of cancerous liver tissues. J Innovative Opt Health Sci 6:1–8

    CAS  Google Scholar 

  67. Borovkova, M.A., Bykov, A., Popov, A., Pierangelo, A., Novikova, T., Pahnke, J. and Meglinski, I. V. (2020) The use of Stokes-Mueller polarimetry for assessment of amyloid-β progression in a mouse model of Alzheimer’s disease. SPIE Proc. Toward Real-Time Spectroscopic Imaging and Diagnosis, 112340M.

  68. Li X, Ranasinghesagara JC, Yao G (2008) Polarization-sensitive reflectance imaging in skeletal muscle. Opt Express 16:9927

    PubMed  Google Scholar 

  69. Dong Y, He H, He C, Ma H (2016) Quantitatively differentiating microstructural variations of skeletal muscle tissues by multispectral Mueller matrix imaging. Opt Health Care Biomed Opt VII 10024:100241J

    Google Scholar 

  70. Chue-Sang J, Bai Y, Stoff S, Straton D, Ramaswamy S, Ramella-Roman JC (2016) Use of combined polarization-sensitive optical coherence tomography and Mueller matrix imaging for the polarimetric characterization of excised biological tissue. J Biomed Opt 21:071109

    Google Scholar 

  71. He C, He H, Chang J, Ma H (2016) Characterizing microstructural changes of skeletal muscle tissues using spectral transformed Mueller matrix polarization parameters. Opt Biopsy XIV: Toward Real-Time Spectroscopic Imaging and Diagnosis 9703:97031A

    Google Scholar 

  72. He H, Chang J, He C, Ma H (2016) Transformation of full 4 × 4 Mueller matrices: a quantitative technique for biomedical diagnosis. SPIE Proc. Dynam Fluctuations Biomed Photonics 9707:97070k

    Google Scholar 

  73. Blokhina, A.A., Ryzhova, V.A., Korotaev, V. V. and Kleshchenok, M.A. (2017) The meat product quality control by a polarimetric method. SPIE Proc. Medical Applications of Laser-Generated Beams of Particles IV: Review of Progress and Strategies for the Future, 102390K.

  74. Luu NT, Le T, Phan Q, Pham T-T-H (2021) Characterization of Mueller matrix elements for classifying human skin cancer utilizing random forest algorithm. J Biomed Opt 26:1–13

    Google Scholar 

  75. Oa CAR, Ahendroo MALAM, Lyas I, Aytashev S, Oman JECRA (2021) Auto-detection of cervical collagen and elastin in Mueller matrix polarimetry microscopic images using K-NN and semantic segmentation classification. Biomed Opt Express 12:2236–2249

    Google Scholar 

  76. Ahmad I, Ahmad M, Khan K, Ashraf S, Ahmad S, Ikram M (2015) Ex vivo characterization of normal and adenocarcinoma colon samples by Mueller matrix polarimetry. J Biomed Opt 20:56012

    PubMed  Google Scholar 

  77. Ortega-quijano N, Fanjul-vélez F, Cos-pérez J. De, Arce-diego JL (2011) Analysis of the depolarizing properties of normal and adenomatous polyps in colon mucosa for the early diagnosis of precancerous lesions. Opt Communications, Elsevier B.V., 284:4852–4856

    CAS  Google Scholar 

  78. Sharma M, Narayanan S, Balasubramanian S, Sundaram S, Krishnamurthy P, Hegde A (2021) Histopathological correlations of bulk tissue polarimetric images: case study. J Biophotonics 14:1–12

    Google Scholar 

  79. Wang J, Zheng W, Lin K, Huang Z (2016) Integrated Mueller-matrix near-infrared imaging and point-wise spectroscopy improves colonic cancer detection. Biomed Opt Express 7:1116–1126

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Vanov DEI, Remin VID, Katerina E, Orisova B, Ykov ALB, Ovikova TAN, Eglinski IGORM, Ssikovski RAO (2021) Polarization and depolarization metrics as optical markers in support to histopathology of ex vivo colon tissue. Biomed Opt Express 12:4560–4572

    Google Scholar 

  81. Firdous S, Ikram M, Faisal M (2005) Measurement of the optical properties of breast tissues in vitro using Mueller matrix polarimetry. Int J Cancer Res 1:29–35

    Google Scholar 

  82. Rajkumar K, Padmaja V (2016) Mueller matrix polar decomposition of breast tissue. ARPN J Eng App Sci 11:1778–1781

    Google Scholar 

  83. Rajkumar K, Sunethri P, Rao PVK, Padmaja V (2015) Mueller matrix imaging polarimetry — for tissue imaging. IEEE Trans Instrum Meas 34:1540–1543

    Google Scholar 

  84. Olaraei AHG, Ontenis LUK, Isek RIC, Okarz DAT, One SUJD, Ilson BRCW, Arzda VIB (2016) Changes of collagen ultrastructure in breast cancer tissue determined by second-harmonic generation double Stokes-Mueller polarimetric microscopy. Biomed Opt Express 7:11–16

    Google Scholar 

  85. Iu TENGL, Un TAOS, Onghui HHE, Iu SHL, Ang Y, Ong D, Ian JWU, Ui HMA (2018) Comparative study of the imaging contrasts of Mueller matrix derived parameters between transmission and backscattering polarimetry. Biomed Opt Express 9:4054–4068

    Google Scholar 

  86. Shen Y, He H, Wu J (2020) Comparative study of the influence of imaging resolution on linear retardance parameters derived from the Mueller matrix comparative study of the influence of imaging resolution on linear retardance parameters derived from the Mueller matrix. Biomed Opt Express 12:211–225

    PubMed  PubMed Central  Google Scholar 

  87. Kodela R, Vangala P (2017) Polarization properties of thyroid tissue by polar decomposition of Mueller matrix. Iranian J Sci Technol, Transact A: Sci 43:279–283

    Google Scholar 

  88. Kodela R, Vanagala P (2017) Polarimetric parameters to categorize normal and malignant thyroid tissue. IETE J Res 63:1–5

    Google Scholar 

  89. He C, He H, Chang J, Dong Y, Liu S, Zeng N, He Y, Ma H (2015) Characterizing microstructures of cancerous tissues using multispectral transformed Mueller matrix polarization parameters. Biomed Opt Express 6:2934–2945

    PubMed  PubMed Central  Google Scholar 

  90. Shukla, P. and Pradhan, A. (2009) Mueller decomposition images for cervical tissue: potential for discriminating normal and dysplastic states. Optics express, 17, 1600–9. http://www.ncbi.nlm.nih.gov/pubmed/19188989.

  91. Savenkov SN, Oberemok EA, Mamilov SA, Esman SS, Asimov MM (2011) Characteristics of light scattering by normal and modified areas of skin tissue. J Appl Spectrosc 78:87–94

    CAS  Google Scholar 

  92. Baba JS, Chung J, Delaughter AH, Cameron BD, Cote GL (2002) Development and calibration of an automated Mueller matrix polarization imaging system. J Biomed Opt 7:341–349

    PubMed  Google Scholar 

  93. Chung, J., Baba, J.S., Delaughter, A.H. and Coté, G.L. (2002) Development and use of a novel automated Mueller matrix polarization imaging system for in-vivo imaging of lesions. SPIE Proc. Optical Biopsy IV, 111–117.

  94. Shrestha S, Deshpande A, Farrahi T, Cambria T, Quang T, Majeski J, Na Y, Zervakis M, Livanos G, Giakos GC (2017) Label-free discrimination of lung cancer cells through Mueller matrix decomposition of diffuse reflectance imaging. Biomed Signal Process Control 40:505–518

    Google Scholar 

  95. Anwar S, Firdous S (2016) Optical diagnosis of dengue virus infected human blood using Mueller matrix polarimetry. Opt Spectrosc 121:322–325

    CAS  Google Scholar 

  96. Badieyan S, Ameri A, Razzaghi MR, Rafii-Tabar H, Sasanpour P (2019) Mueller matrix imaging of prostate bulk tissues; polarization parameters as a discriminating benchmark. Photodiagn Photodyn Ther 26:90–96

    Google Scholar 

  97. Kiseleva E, Kirillin M, Feldchtein F, Vitkin A, Sergeeva E, Zagaynova E, Streltzova O, Shakhov B, Gubarkova E, Gladkova N (2015) Differential diagnosis of human bladder mucosa pathologies in vivo with cross-polarization optical coherence tomography. Biomed Opt Express 6:1464–1476

    PubMed  PubMed Central  Google Scholar 

  98. Wang W, Lim LG, Srivastava S, Yan JSB, Shabbir A, Liu Q (2014) Roles of linear and circular polarization properties and effect of wavelength choice on differentiation between ex vivo normal and cancerous gastric samples. J Biomed Opt 19:046020. https://doi.org/10.1117/1.JBO.19.4.046020

    Article  PubMed  Google Scholar 

  99. Borovkova M, Trifonyuk L, Ushenko V, Dubolazov O, Vanchulyak O, Bodnar G, Ushenko Y, Olar O, Ushenko O, Sakhnovskiy M, Bykov A, Meglinski I (2019) Mueller-matrix-based polarization imaging and quantitative assessment of optically anisotropic polycrystalline networks. PLoS ONE 14:1–12

    Google Scholar 

  100. Trubin, P.K. and Murashov, A.A. (2019) Detection of fake biotissue by polarimetric method using Mueller matrices. Journal of Physics: Conference Series, 1326.

  101. Sun M, He H, Zeng N, Du E, Guo Y, Liu S, Wu J, He Y, Ma H (2014) Characterizing the microstructures of biological tissues using Mueller matrix and transformed polarization parameters. Biomed Opt Express 5:4223

    PubMed  PubMed Central  Google Scholar 

  102. Sun M, He H, Zeng N, Du E, He Y, Ma H (2014) Reducing the orientation influence of Mueller matrix measurements for anisotropic scattering media. Twelfth Int Conference Photonics Imaging Biol Med (PIBM 2014) 9230:92300O

    Google Scholar 

  103. He H, Dong Y, Zhou J, Ma H (2017) Characterizing microstructural features of biomedical samples by statistical analysis of Mueller matrix images. Dynamics and Fluctuations in Biomedical Photonics XIV 10063:100630H

    Google Scholar 

  104. Walsh JT, Maitland DJ (2002) Comparative study of polarized light propagation in biologic tissues. Comparative Study 7:300–306. https://doi.org/10.1117/1.1483318

    Article  Google Scholar 

  105. Peyvasteh M, Popov A, Bykov A, Pierangelo A, Novikova T, Meglinski I (2020) Evolution of raw meat polarization-based properties by means of Mueller imaging. J Biophotonics 14:1–13

    Google Scholar 

  106. Fanjul-Vélez, F., Ortega-Quijano, N., Buelta, L. and Arce-Diego, J.L. (2008) Determination of the pathological state of skin samples by optical polarimetry parameters. SPIE Proceedings on Photonics, Devices, and Systems IV, 713801.

  107. Martin L, Brun GL, Jeune BL (2013) Mueller matrix decomposition for biological tissue analysis. Optics Communications, Elsevier 293:4–9

    CAS  Google Scholar 

  108. Boulvert F, Boulbry B, Brun GL, Jeune BL, Rivet S, Cariou J (2005) Analysis of the depolarizing properties of irradiated pig skin. J Opt A: Pure Appl Opt 8:21–28

    Google Scholar 

  109. Hill, A.R., Cameron, B.D., Chung, J.R., Baba, J.S. and Coté, G.L. (2001) Development and calibration of an automated Mueller matrix polarization system for skin lesion differentiation. SPIE Proc. Optical Tomography and Spectroscopy of Tissue IV, 449–454.

  110. Yousaf MS, Khurshid A, Ahmad I, Mahmood R, Alam M, Bukhari SB, Khan JA, Rafi M, Ikram M (2020) Label free characterization of soft tissue with optical polarization technique. Laser Physics 30:075601

    CAS  Google Scholar 

  111. Sajid M, Ahmad I, Khurshid A, Ikram M (2020) Machine assisted classification of chicken, beef and mutton tissues using optical polarimetry and bagging model. Photodiagnosis and Photodynamic Therapy 31:101779

    Google Scholar 

  112. Ghosh N, Vitkin IA (2011) Tissue polarimetry: concepts, challenges, applications, and outlook. J Biomed opt 16:110801

    PubMed  Google Scholar 

  113. Wood MFG, Ghosh N, Moriyama EH, Wilson BC, Vitkin IA (2009) Proof-of-principle demonstration of a Mueller matrix decomposition method for polarized light tissue characterization in vivo. J Biomed Opt 14:014029. https://doi.org/10.1117/1.3065545

    Article  CAS  PubMed  Google Scholar 

  114. Liu B, Yao Y, Liu R, Ma H, Ma L (2019) Mueller polarimetric imaging for characterizing the collagen microstructures of breast cancer tissues in different genotypes. Optics Communications 433:60–67

    CAS  Google Scholar 

  115. Sajid M, Ahmad I, Khurshid A, Ikram M (2020) Photodiagnosis and photodynamic therapy machine assisted classi Fi cation of chicken, beef and mutton tissues using optical polarimetry and bagging model. Photodiagnosis and Photodynamic Therapy Elsevier 31:101779

    Google Scholar 

  116. Yousaf MS, Khurshid A, Mahmood R, Ikram M (2020) Polarimetric comparison of fresh and frozen skeletal muscle tissues of goat. Photodiagnosis and Photodynamic Therapy 32:102071

    CAS  PubMed  Google Scholar 

  117. Badieyan, S., Dilmaghani-marand, A. and Hajipour, M.J. (2018) Detection and discrimination of bacterial colonies with Mueller matrix imaging. Scientific Reports, 1–10.

  118. Gul B, Ashraf S, Khan S, Nisar H, Ahmad I (2021) Cell refractive index: models, insights, applications and future perspectives. Photodiagnosis and Photodynamic Therapy 33:102096

    CAS  PubMed  Google Scholar 

  119. Khan R, Gul B, Khan S, Nisar H, Ahmad I (2021) Refractive index of biological tissues: review, measurement techniques, and applications. Photodiagnosis and Photodynamic Therapy 33:102192

    CAS  PubMed  Google Scholar 

  120. Qi J, Elson DS (2016) A high definition Mueller polarimetric endoscope for tissue characterisation. Sci Rep 6:25953

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Louie DC, Tchvialeva L, Kalia S, Lui H, Lee TK (2021) Constructing a portable optical polarimetry probe for in-vivo skin cancer detection. J Biomed Opt 26:035001

    CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iftikhar Ahmad.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3181 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, Z., Mahmood, T., Shahzad, A. et al. Assessment of tissue pathology using optical polarimetry. Lasers Med Sci 37, 1907–1919 (2022). https://doi.org/10.1007/s10103-021-03450-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-021-03450-7

Keywords

Navigation