Skip to main content
Log in

Monte Carlo simulations of photodynamic therapy in human blood model

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

This study aims to simulate a therapeutic plan for a normal human blood model under various patho-physiological conditions, such as the development of leukemia/blood diseases, by means of Monte Carlo multilayered simulation. The photosensitizing compound selectively accumulates in the target cells. A superficial treatment of a blood sample was performed at different ratios of oxygen saturation (\({f}_{oxy} = 50{\%}, 53{\%}, 55{\%}, 60{\%}, 65{\%},{ and }70{\%}\)) under the concentration (\({C}_{{MC}540}\) = 30 µM) effect of merocyanine 540 (MC540) in the blood irradiation. This was done under the application of visible light of wavelength ~ \(580{ nm}\) at an exposure time ~ 60 s. The dose of photodynamic therapy (PDT) was evaluated for the biological damage, leading to necrosis and blood damage during the treatment. In addition, the effect of PDT treatment response in the blood is related to hemoglobin oxygen saturation, resulting in an excellent relationship between the changes caused by the treatment in the blood at a peculiar oxygen saturation rate (for the highest response: \({f}_{oxy}=\) 50%) and a light dose (LD) of 3.83 \({{Jcm}}^{-2}\) above the minimal toxicity of normal tissues. The photodynamic dose is related to the depth of necrosis and the time of treatment for the achievement of the LD delivery at the PDT of blood.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

taken from previous work [13])

Fig. 9
Fig. 10
Fig. 11
Fig. 12

source powers (P = 10, 30, 50, 70, and 100 (mW)) with CMC540 = 30 μM

Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Santos D, Ferreira A et al (2019) Photodynamic therapy in cancer treatment-an update review. J Cancer Metastasis Treat 5(25):10–20517

    Google Scholar 

  2. Jarvi Mark T et al (2011) The influence of oxygen depletion and photosensitizer triplet-state dynamics during photodynamic therapy on accurate singlet oxygen luminescence monitoring and analysis of treatment dose response. Photochem Photobiol 87(1):223–234

    Article  CAS  Google Scholar 

  3. Baochang L, Farrell TJ, Patterson MS (2012) Comparison of noninvasive photodynamic therapy dosimetry methods using a dynamic model of ALA-PDT of human skin. Phys Med Biol 57(3):825

    Article  Google Scholar 

  4. Ferraz RCMC et al (2009) Determination of threshold dose of photodynamic therapy to measure superficial necrosis. Photomed Laser Surg 27(1):93–99

    Article  CAS  Google Scholar 

  5. Rocha LB et al (2015) Elimination of primary tumours and control of metastasis with rationally designed bacteriochlorin photodynamic therapy regimens. Eur J Cancer 51(13):1822–1830

    Article  CAS  Google Scholar 

  6. Atzpodien J, Gulati SC, Clarkson BD (1986) Comparison of the cytotoxic effects of merocyanine-540 on leukemic cells and normal human bone marrow. Can Res 46(10):4892–4895

    CAS  Google Scholar 

  7. Qiu K, Sieber F (1992) Merocyanine 540-sensitized photoinactivation of leukemia cells: effects of dose fractionation. Photochem Photobiol 56(4):489–493

    Article  CAS  Google Scholar 

  8. Farina B et al (1999) MC simulation of light fluence in tissue in a cylindrical diffusing fibre geometry. Phys Med Biol 44(1):1

    Article  CAS  Google Scholar 

  9. Wang HW et al (2005) Broadband reflectance measurements of light penetration, blood oxygenation, hemoglobin concentration, and drug concentration in human intraperitoneal tissues before and after photodynamic therapy. J Biomed Opt 10(1):014004

    Article  Google Scholar 

  10. Herrmann BH, Hornberger C (2018) Monte-Carlo simulation of light tissue interaction in medical hyperspectral imaging applications. Curr Dir Biomed Eng 4(1):275–278

    Article  Google Scholar 

  11. Chatterjee S, Phillips JP, Kyriacou PA (2016) Monte Carlo investigation of the effect of blood volume and oxygen saturation on optical path in reflectance pulse oximetry. Biomed Physics Eng Express 2(6):065018

    Article  Google Scholar 

  12. Alotaibi S, Smith WA (2017) A biophysical 3D morphable model of face appearance. In Proceedings of the IEEE International Conference on Computer Vision Workshops (pp. 824–832). https://doi.org/10.1109/ICCVW.2017.102

  13. Chen S et al (2015) Monte Carlo investigation of optical coherence tomography retinal oximetry. IEEE Trans Biomed Eng 62(9):2308–2315

    Article  Google Scholar 

  14. Haj-Hosseini N (2012) Fluorescence spectroscopy for quantitative demarcation of glioblastoma using 5-aminolevulinic acid. Linköping University Electronic Press, Diss

    Google Scholar 

  15. Kalyanaraman B et al (1987) Photodynamic action of merocyanine 540 on artificial and natural cell membranes: involvement of singlet molecular oxygen. Proc Natl Acad Sci 84(9):2999–3003

    Article  CAS  Google Scholar 

  16. Zhang S, Zhang Z, Jiang D (2002) Photodynamic therapy of different photosensitizers in leukemia. In International Workshop on Photonics and Imaging in Biology and Medicine (Vol. 4536, pp. 54–63). International Society for Optics and Photonics. https://doi.org/10.1117/12.462525

  17. Nowak-Sliwinska P et al (2006) Verteporfin, photofrin II, and merocyanine 540 as PDT photosensitizers against melanoma cells. Biochem Biophys Res Commun 349(2):549–555

    Article  CAS  Google Scholar 

  18. Hoebeke M, Piette J, van de Vorst A (1990) Viscosity-dependent isomerization and fluorescence yields of merocyanine 540. J Photochem Photobiol 4:273–282

    Article  CAS  Google Scholar 

  19. Ormond AB, Freeman HS (2013) Dye sensitizers for photodynamic therapy Materials 6(3):817–840

    CAS  PubMed  Google Scholar 

  20. Dixon JM, Du H (2020) Merocyanine 540 - OMLC citation. How and when to reference. Retrieved from https://omlc.org/spectra/PhotochemCAD/html/066.html

  21. Zhu TC, Finlay JC (2006) Prostate PDT dosimetry. Photodiagn Photodyn Ther 3(4):234–246

    Article  CAS  Google Scholar 

  22. van Straten D et al (2017) Oncologic photodynamic therapy: basic principles, current clinical status and future directions. Cancers 9(2):19

    Article  Google Scholar 

  23. Zhu TC , Liu B , Kim MM , McMillan D , Liang X, Finlay JC, Busch TM (2014) Comparison of singlet oxygen threshold dose for PDT. In: Optical Methods for Tumor Treatment and Detection: Mechanisms and Techniques in Photodynamic Therapy XXIII. International Society for Optics and Photonics. Proceedings Volume 8931. https://doi.org/10.1117/12.2039719

  24. Uzdensky AB et al (2015) Photodynamic therapy: a review of applications in neurooncology and neuropathology. J Biomed Opt 20(6):061108

    Article  Google Scholar 

  25. van Leeuwen-van Zaane F (2014) Fiber optic spectroscopy for the optimization of photodynamic therapy. Erasmus University Rotterdam. http://hdl.handle.net/1765/51078

  26. Campbell CL (2016) Under the skin: Monte Carlo radiation transfer modelling of photodynamic therapy. Doctoral thesis, University of St Andrews. Google Scholar. https://research-repository.standrews.ac.uk/handle/10023/9899

  27. Periyasamy V, Pramanik M (2014) Monte Carlo simulation of light transport in turbid medium with embedded object—spherical, cylindrical, ellipsoidal, or cuboidal objects embedded within multilayered tissues. J Biomed Opt 19(4):045003

    Article  Google Scholar 

  28. Jacques SL (1998) Light distributions from point, line and plane sources for photochemical reactions and fluorescence in turbid biological tissues. Photochem Photobiol 67(1):23–32

    Article  CAS  Google Scholar 

  29. Milanic M, Majaron B (2011) Three-dimensional Monte Carlo model of pulsed-laser treatment of cutaneous vascular lesions. J Biomed Opt 16(12):128002

    Article  Google Scholar 

  30. Burns JM et al (2016) Optical properties of biomimetic probes engineered from erythrocytes. Nanotechnology 28(3):035101

    Article  Google Scholar 

  31. Prahl SA (1989) A Monte Carlo model of light propagation in tissue. In Dosimetry of laser radiation in medicine and biology. In: Proceedings International Society for Optics and Photonics 10305:1030509. https://doi.org/10.1117/12.2283590

  32. Periyasamy V, Pramanik M (2017) Advances in Monte Carlo simulation for light propagation in tissue. IEEE Rev Biomed Eng 10:122–135

    Article  Google Scholar 

  33. Niemz MH (2007) Laser-tissue interactions. Springer-Verlag, Berlin Heidelberg, pp 78–79

    Book  Google Scholar 

  34. Wilson BC, Patterson MS (2008) The physics, biophysics and technology of photodynamic therapy. Phys Med Biol 53(9):R61

    Article  CAS  Google Scholar 

  35. Driver I, Lowdell CP, Ash DV (1991) In vivo measurement of the optical interaction coefficients of human tumours at 630 nm. Phys Med Biol 36(6):805

    Article  CAS  Google Scholar 

  36. Angell-Petersen E, Hirschberg H, Madsen SJ (2007) Determination of fluence rate and temperature distributions in the rat brain; implications for photodynamic therapy. J Biomed Opt 12(1):014003

    Article  Google Scholar 

  37. Jacques SL (2010) How tissue optics affect dosimetry of photodynamic therapy. J Biomed Opt 15(5):051608

    Article  Google Scholar 

  38. Bargo PR (2004) Optical measurements for quality control in photodynamic therapy. PhD thesis, Oregon Health & Science University

    Google Scholar 

  39. Campbell CL et al (2015) Monte Carlo modelling of daylight activated photodynamic therapy. Phys Med Biol 60(10):4059

    Article  CAS  Google Scholar 

  40. Zhu TC, Finlay JC, Wilson B (2005) TH-A-T-6C-01: Photodynamic Therapy: Fundamentals and Dosimetry. Med Phys 32(6).https://doi.org/10.1118/1.1999750

  41. Campbell CL et al (2016) Monte Carlo modelling of photodynamic therapy treatments comparing clustered three dimensional tumour structures with homogeneous tissue structures. Phys Med Biol 61(13):4840

    Article  CAS  Google Scholar 

  42. Chen Q et al (1996) Damage threshold of normal rat brain in photodynamic therapy. Photochem Photobiol 64(1):163–167

    Article  CAS  Google Scholar 

  43. Ferraz RCMC et al (2009) Determination of threshold dose of photodynamic therapy to measure superficial necrosis. Photomed Laser Surg 27(1):93–99

    Article  CAS  Google Scholar 

  44. O’Brien JM et al (1992) Merocyanine 540-sensitized photoinactivation of enveloped viruses in blood products: site and mechanism of phototoxicity. Blood 80(1):277–285

    Article  Google Scholar 

  45. Gaffney DK, Sieber F (1990) Merocyanine 540-sensitized photoinactivation of soluble and membrane-bound enzymes in L1210 leukemia cells. Can Res 50(24):7765–7769

    CAS  Google Scholar 

  46. Gaffney DK, Sieber F (1990) Merocyanine 540-sensitized photoinactivation of soluble and membrane-bound enzymes in L1210 leukemia cells. Cancer research 50(24):7765–7769. https://pubmed.ncbi.nlm.nih.gov/2174731/

  47. Daziano JP (2012) Photochemically generated elemental selenium forms conjugates with serum proteins that are preferentially cytotoxic to leukemia and selected solid tumor cells. Photochem Photobiol 88(2):448–460

    Article  CAS  Google Scholar 

  48. Traul DL, Sieber F (2015) Inhibitory effects of merocyanine 540-mediated photodynamic therapy on cellular immune functions: a role in the prophylaxis of graft-versus-host disease? J Photochem Photobiol, B 153:153–163

    Article  CAS  Google Scholar 

  49. Fink C, Enk A, Gholam P (2015) Photodynamic therapy–aspects of pain management. JDDG: J der Deutschen Dermatologischen Gesellschaft 13(1):15–22

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Laref.

Ethics declarations

Ethical approval

All authors contributed equally for the computation and writing of manuscript.

Informed consent

No informed consent process was necessary.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alanazi, R.S., Laref, A. Monte Carlo simulations of photodynamic therapy in human blood model. Lasers Med Sci 37, 1515–1529 (2022). https://doi.org/10.1007/s10103-021-03383-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-021-03383-1

Keywords

Navigation