Skip to main content
Log in

Dual-wavelength erbium-doped fluoride fiber laser

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

The laser source with 3 μm/2 μm output wavelength has many application prospects in clinical medicine, photoelectric countermeasure, and scientific research measurement. An Er3+ doped ZBLAN fiber laser with output wavelength of 2 .8 μm and 1 .6 μm is experimentally studied. By setting the pump power to 5 W, a continuous dual-wavelength output with a central wavelength of 2.803 μm and 1.61 μm is obtained and the corresponding maximum output power is 362.4 mW and 108.6 mW. The slope efficiency is 12.1% and 4.94% respectively. What’s more, the slope efficiency is 12.1% and 4.94% respectively, and the fluctuation rates of peak power of the two wavelengths are 9.7% and 2.1% within 4 h which indicate that the laser has relatively good stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Chen W, Han Z, Shi H et al (2017) Widely wavelength tunable gain-switched Er3+-doped ZBLAN fiber laser around 2.8μm. Opt Express 25(8):8816

    Article  Google Scholar 

  2. Tang P, Wu M, Wang Q et al (2016) 2.8μm pulsed Er3+:ZBLAN fiber laser modulated by topological insulator. IEEE Photon Technol Lett 28(14):1573–1576

    Article  CAS  Google Scholar 

  3. Arora H, Falto-Aizpurua L, Chacon A et al (2015) Lasers for nevi: a review. Lasers Med Sci 30(7):1991–2001

    Article  PubMed  Google Scholar 

  4. Al-Karadaghi TS, Franzen R, Jawad HA et al (2015) Investigations of radicular dentin permeability and ultrastructural changes after irradiation with Er,Cr:YSGG laser and dual wavelength (2780 and 940 nm) laser. Lasers Med Sci 30(8):2115–2121

    Article  PubMed  Google Scholar 

  5. Khamis MA, Ennser K (2017) Enhancement on the generation of amplified spontaneous emission in thulium-doped silica fiber at 2μm. Opt Commun 403:127–132

    Article  CAS  Google Scholar 

  6. Jobin F, Maes F, Bernier M et al (2017) Diode-pumped mid-infrared fiber laser with 50% slope efficiency. Optica 4(2):235

    Article  Google Scholar 

  7. Sergei A, Darren DH, Alexander F et al (2016) High-power mid-infrared femtosecond fiber laser in the water vapor transmission window. Optica 3:1373

    Article  Google Scholar 

  8. Bayly JG, Kartha VB, Stevens WH (1963) The absorption spectra of liquid phase H2O, HDO and D2O from 0.7μm to 10μm. Infrared Physics 3(4):211~222

    Article  Google Scholar 

  9. Wei C, Zhu X, Norwood RA et al (2012) Passively Q-switched 2.8-mum nanosecond fiber laser. IEEE Photon Technol Lett 24(19):1741–1744

    Article  CAS  Google Scholar 

  10. Hu T, Hudson DD, Jackson SD (2012) Actively Q-switched 2.9μm Ho3+/Pr3+-doped fluoride fiber laser. Opt Lett 37(11):2145~2147

    Google Scholar 

  11. Tokita S, Murakami M, Shimizu S, et al. 12W Q-switched Er:ZBLAN fiber laser at 2.8μm. Opt Lett, 2011, 36(15): 2812~2814

  12. Maes F, Fortin V, Bernier M et al (2017) 5.6W monolithic fiber laser at 3.55μm. Opt Lett 42(11):2054

    Article  CAS  PubMed  Google Scholar 

  13. Ongstad AP, Kaspi R, Dente GC et al (2007) Midinfrared, optically pumped, unstable resonator lasers. Appl Phys Lett 90(19):191107

    Article  CAS  Google Scholar 

  14. Ongstad AP, Dente GC, Tilton ML et al (2010) High brightness from unstable resonator mid-IR semiconductor lasers. J Appl Phys 107(12):123113

    Article  CAS  Google Scholar 

  15. Yang C, Paxton AH, Newell TC et al (2017) On-chip unstable resonator cavity GaSb-based quantum well lasers. J Appl Phys 121(14):3146

    Google Scholar 

  16. Chang J, Mao Q, Feng S et al (2010) Widely tunable mid-IR difference-frequency generation based on fiber lasers. Opt Lett 35(20):3486–3488

    Article  CAS  PubMed  Google Scholar 

  17. Sobon G, Krzempek K, Abramski KM (2013) DFG-based mid-IR generation using a compact dual-wavelength all-fiber amplifier for laser spectroscopy applications. Opt Express 21(17):20023–20031

    Article  CAS  PubMed  Google Scholar 

  18. Arbabzadah E, Chard S, Amrania H et al (2011) Comparison of a diode pumped Er:YSGG and Er:YAG laser in the bounce geometry at the 3μm transition. Opt Express 19(27):25860–25865

    Article  CAS  PubMed  Google Scholar 

  19. Martyshkin DV, Moskalev IS, Mirov MS et al (2011) Progress in mid-IR Cr2+ and Fe2+ doped II-VI materials and lasers. Opt Mater Express 1(5):898~910

    Google Scholar 

  20. Fried NM, Yang Y, Chaney CA et al (2004) Transmission of Q-switched erbium:YSGG (λ=2.79μm) and erbium:YAG (λ=2.94μm) laser radiation through germanium oxide and sapphire optical fibres at high pulse energies. Lasers Med Sci 19(3):155–160

    Article  PubMed  Google Scholar 

  21. Luo Z, Liu C, Huang Y et al (2014) Topological-insulator passively Q-switched double-clad fiber laser at 2μm wavelength. IEEE J Quantum Electron 20(5):1–8

    Google Scholar 

  22. Liu J, Xu J, Wang P (2012) Graphene-based passively Q-switched 2μm thulium-doped fiber laser. Opt Commun 285(24):5319–5322

    Article  CAS  Google Scholar 

  23. Zhu G, Zhu X, Balakrishnan K et al (2013) Fe2+:ZnSe and graphene Q-switched singly Ho3+-doped ZBLAN fiber lasers at 3μm. Opt Mater Express 3(9):1365–1377

    Article  CAS  Google Scholar 

  24. Hendersonsapir O, Munch J, Ottaway DJ (2014) Mid-infrared fiber lasers at and beyond 3.5μm using dual-wavelength pumping. Opt Lett 39(3):493~495

    Google Scholar 

  25. Zhang J, Wang N, Guo Y et al (2018) Tm3+-doped lead silicate glass sensitized by Er3+ for efficient ~2μm mid-infrared laser material. SPECTROCHIM ACTA A 199:65–70

    Article  CAS  Google Scholar 

  26. Pratisto H, Frenz M, Ith M et al (1996) Combination of fiber-guided pulsed erbium and holmium laser radiation for tissue ablation under water. Appl Opt 35(19):3328~3337

    Article  Google Scholar 

  27. Sumiyoshi T, Sekita H, Arai T et al (1999) High-power continuous-wave 3 and 2μm cascade Ho3+: ZBLAN fiber laser and its medical applications. IEEE J Quantum Electron 5(4):936~943

    Google Scholar 

  28. Li J, Hu T, Jackson SD (2012) Q-switched induced gain switching of a two-transition cascade laser. Opt Express 20(12):13123

    Article  CAS  PubMed  Google Scholar 

  29. Tsai TY, Fang YC, Tsao HX et al (2012) Passively cascade-pulsed erbium ZBLAN all-fiber laser. Opt Express 20(12):12787–12792

    Article  CAS  PubMed  Google Scholar 

  30. Jackson SD, Pollnau M, Li J (2011) Diode pumped erbium cascade fiber lasers. IEEE J Quantum Electron 47(4):471–478

    Article  CAS  Google Scholar 

  31. Razeghi M, Bandyopadhyay N, Bai Y et al (2013) Recent advances in mid infrared (3-5μm) quantum cascade lasers. Opt Mater Express 3(11):1872–1884

    Article  CAS  Google Scholar 

  32. Li J, Hudson DD, Jackson SD (2011) High-power diode-pumped fiber laser operating at 3μm. Opt Lett 36(18):3642–3644

    Article  PubMed  Google Scholar 

Download references

Funding

This work has been supported by the National Natural Science Foundation of China (Grant No.61675035. It provides basic theoretical research and copyright fees) and People’s Government of Jilin Province (Grant No. 20160204012GX. It provides device processing and testing costs).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongliang Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Ethics approval was not needed.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Li, Y., Mao, A. et al. Dual-wavelength erbium-doped fluoride fiber laser. Lasers Med Sci 34, 1665–1670 (2019). https://doi.org/10.1007/s10103-019-02766-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-019-02766-9

Keywords

Navigation