Skip to main content

Advertisement

Log in

Transmission of Q-switched erbium:YSGG (λ=2.79 μm) and erbium:YAG (λ=2.94 μm) laser radiation through germanium oxide and sapphire optical fibres at high pulse energies

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

The erbium:YSGG and erbium:YAG lasers are used for tissue ablation in dermatology, dentistry and ophthalmology. The purpose of this study was to compare germanium oxide and sapphire optical fibres for transmission of sufficient Q-switched erbium laser pulse energies for potential use in both soft and hard tissue ablation applications. Fibre transmission studies were conducted with Q-switched (500 ns) Er:YSGG (λ=2.79 μm) and Er:YAG (λ=2.94 μm) laser pulses delivered at 3 Hz through 1-m-long, 450-μm germanium oxide and 425-μm sapphire optical fibres. Transmission of free-running (300 μs) Er:YSGG and Er:YAG laser pulses was also conducted for comparison. Each set of measurements was carried out on seven different sapphire or germanium fibres, and the data were then averaged. Fibre attenuation of Q-switched Er:YSGG laser energy measured 1.3±0.1 dB/m and 1.0±0.2 dB/m for the germanium and sapphire fibres, respectively. Attenuation of Q-switched Er:YAG laser energy measured 0.9±0.3 dB/m and 0.6±0.2 dB/m, respectively. A maximum Q-switched Er:YSGG pulse energy of 42 mJ (26–30 J/cm2) was transmitted through the fibres. However, fibre tip damage was observed at energies exceeding 25 mJ (n=2). Both germanium oxide and sapphire optical fibres transmitted sufficient Q-switched Er:YSGG and Er:YAG laser radiation for use in both soft and hard tissue ablation. This is the first report of germanium and sapphire fibre optic transmission of Q-switched erbium laser energies of 25–42 mJ per pulse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ren Q, Venugopalan V, Schomacker K, Deutsch TF, Flotte TJ, Puliafito CA, Birngruber R (1992) Midinfrared laser ablation of the cornea—a comparative study. Lasers Surg Med 12:274–281

    CAS  PubMed  Google Scholar 

  2. Frenz M, Pratisto H, Konz F, Jansen ED, Welch AJ, Weber HP (1996) Comparison of the effects of absorption coefficient and pulse duration of 2.12-mm and 2.79-mm radiation on laser ablation of tissue. IEEE J Quant Electron 32:2025–2036

    Article  CAS  Google Scholar 

  3. Kampmeier J, Schafer S, Lang GE, Lang GK (1999) Comparison of free-running vs. Q-switched Er:YAG laser photorefractive keratectomy (scanning mode) in swine eyes. J Refract Surg 15:563–571

    CAS  PubMed  Google Scholar 

  4. Jelinkova H, Pasta J, Nemec M, Sulc J, Miyagi M, Shi YW, Matsuura Y, Jelinek M (2003) Different influence of long and short mid-infrared laser pulse on eye tissue. Laser Phys 13:735–742

    Google Scholar 

  5. De Souza RF, Seitz B, Langenbucher A, Hofmann-Rummelt C, Schlotzer-Schrehardt U, Viestenz A, Kuchle M, Naumann GO (2003) Q-switched 2.94-microm Er:YAG laser trephination with convergent and divergent cut angles for penetrating keratoplasty. Cornea 22:562–568

    Article  PubMed  Google Scholar 

  6. Stojkovic M, Kuchle M, Seitz B, Langenbucher A, Viestenz A, Viestenz A, Hofmann-Rummelt C, Schlotzer-Schrehardt U, Nuamann GOH (2003) Nonmechanical Q-switched Erbium:YAG laser trephination for penetrating keratoplasty. Arch Ophthalmol 121:1415–1422

    Article  PubMed  Google Scholar 

  7. Fried D, Ragadio J, Champion A (2001) Residual heat deposition in dental enamel during IR laser ablation at 2.79, 2.94, 9.6, and 10.6 microm. Lasers Surg Med 29:221–229

    Article  CAS  PubMed  Google Scholar 

  8. Fried D, Ashouri N, Breunig T, Shori R (2002) Mechanism of water augmentation during IR laser ablation of dental enamel. Lasers Surg Med 31:186–193

    Article  PubMed  Google Scholar 

  9. Fried D, Shori R (1998) Q-switched Er:YAG ablation of dental hard tissue. In: Proceedings of 6th International Congress on Lasers in Dentistry, pp 77–79

  10. Fried D, Shori RK, Duhn CW (1998) Backspallation due to ablative recoil generated during Q-switched Er:YAG ablation of dental enamel. Proc SPIE 3248:78–85

    Article  Google Scholar 

  11. Walsh JT Jr, Flotte TJ, Deutsch TF (1989) Er:YAG laser ablation of tissue: effect of pulse duration and tissue type on thermal damage. Lasers Surg Med 9:314–326

    PubMed  Google Scholar 

  12. Fried NM, Fried D (2001) Comparison of Er:YAG and 9.6-μm TE CO2 lasers for ablation of skull tissue. Lasers Surg Med 28:335–343

    Article  CAS  PubMed  Google Scholar 

  13. Harrington JA (2004). Infrared fibers and their applications, SPIE Press, Bellingham

    Google Scholar 

  14. Jundt DH, Fejer MM, Byer RL (1989) Characterization of single-crystal sapphire fibers for optical power delivery systems. Appl Phys Lett 55:2170–2172

    Article  CAS  Google Scholar 

  15. Merberg GN, Harrington JA (1993) Optical and mechanical properties of single-crystal sapphire fibers. Appl Opt 32:3201–3209

    CAS  Google Scholar 

  16. Waynant RW, Oshry S, Fink M (1993) Infrared measurements of sapphire fibers for medical applications. Appl Opt 32:390–392

    CAS  Google Scholar 

  17. Merberg GN (1993) Current status of infrared fiber optics for medical power delivery. Lasers Surg Med 13:572–576

    CAS  PubMed  Google Scholar 

  18. Chang RSF, Phomsakha V, Djeu N (1995) Recent advances in sapphire fibers. Proc SPIE 2396:48–53

    Google Scholar 

  19. Clarke GM, Chadwick D, Nubling RK, Harrington JA (1995) Sapphire fibers for three micron delivery systems. Proc SPIE 2396:54–59

    Google Scholar 

  20. Pryshlak AP, Dugan JR, Fitzgibbon JJ (1996) Advancements in sapphire optical fibers for the delivery of erbium laser energy and IR sensor applications. Proc SPIE 2677:35–42

    Article  CAS  Google Scholar 

  21. Nubling RK, Harrington JA (1997) Optical properties of single-crystal sapphire fibers. Appl Opt 36:5934–5940

    CAS  Google Scholar 

  22. Nubling RK, Harrington JA (1998). Single-crystal laser-heated pedestal-growth sapphire fibers for Er:YAG laser power delivery. Appl Opt 37:4777–4781

    Google Scholar 

  23. Papagiakoumou E, Papadopoulos DN, Anastasopoulou N, Serafetinides AA (2003) Comparative evaluation of HP oxide glass fibers for Q-switched and free-running Er:YAG laser beam propagation. Opt Commun 220:151–160

    Article  CAS  Google Scholar 

  24. Papagiakoumou EI, Klinkenberg B, Serafetinides AA (2003) Determination of the maximum capabilities of high-power oxide glass fibers in the mid-infrared for medical applications. Proc SPIE 5143:289–299

    Article  CAS  Google Scholar 

  25. Papadopoulos DN, Papagiakoumou E, Serafetinides AA (2002) Q-switched Er:YAG radiation transmission through an oxide glass fiber for medical applications. Proc SPIE 4916:415–422

    Article  Google Scholar 

  26. Papagiakoumou EI, Papadopoulos DN, Serafetinides AA (2003) Q-switched Er:YAG radiation transmission through medical sapphire fibers. Proc SPIE 5131:314–318

    Article  CAS  Google Scholar 

  27. Serafetinides AA, Alexander A, Fabrikesi, Eugenia T, Chourdakis, Anastasopoulou AA, Nikoletta (1999) Pulsed HF and Er:YAG laser radiation transmission through sapphire and fluoride glass fibers. Proc SPIE 3570:28–35

    Article  Google Scholar 

  28. Levin K, Tran D, Tchapnijkov A, Fried NM (2004). Specialty fiber expands infrared laser applications. Biophoton Int 11:41–43

    Google Scholar 

  29. Fried NM, Yang Y, Chaney CA, Fried D (2004). Transmission of free-running and q-switched erbium:YSGG laser radiation through sapphire and germanium fibers. Proc SPIE 5317:9–12

    Article  Google Scholar 

  30. Anastasopoulou N, Ziolek C, Serafetinides AA, Lubatschowski H (2000) Q-switched Er:YAG radiation transmission through fluoride glass fibers and dielectric metallic hollow waveguides. Opt Commun 186:167–171

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Ken Levin, Dan Tranh, and Alex Tchapyjnikov of Infrared Fiber Systems (Silver Spring, Md., USA) for providing the germanium fibres used in this study. This research was supported, in part, by an NIH phase I SBIR grant awarded to Infrared Fiber Systems: grant no. 1R43 EY13889–01, Department of Defense Prostate Cancer Research Program, grant no. DAMD17-03-0087 and NIH/NIDR grant no. 1-R01 DE14554.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathaniel M. Fried.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fried, N.M., Yang, Y., Chaney, C.A. et al. Transmission of Q-switched erbium:YSGG (λ=2.79 μm) and erbium:YAG (λ=2.94 μm) laser radiation through germanium oxide and sapphire optical fibres at high pulse energies. Lasers Med Sci 19, 155–160 (2004). https://doi.org/10.1007/s10103-004-0316-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-004-0316-8

Keywords

Navigation