Skip to main content

Advertisement

Log in

Determining the optimal dose of 1940-nm thulium fiber laser for assisting the endodontic treatment

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

Insufficient cleaning, the complex anatomy of the root canal system, inaccessible accessory canals, and inadequate penetration of irrigants through dentinal tubules minimizes the success of the conventional endodontic treatment. Laser-assisted endodontic treatment enhances the quality of conventional treatment, but each laser wavelength has its own its own limitations. The optimal parameters for the antibacterial efficiency of a new wavelength, 1940-nm Thulium Fiber Laser, were firstly investigated in this study. This paper comprises of two preliminary analyses and one main experimental study, presents data about thermal effects of 1940-nm laser application on root canal tissue, effective sterilization parameters for bacteria, Enterococcus faecalis, and finally the antibacterial effectiveness of this 1940-nm Thulium Fiber Laser irradiation in single root canal. Based on these results, the optimal parameter range for safe laser-assisted root canal treatment was investigated in the main experiments. Comparing the antibacterial effects of four laser powers on an E. faecalis bacteria culture in vitro in 96-well plates showed that the most effective group was the one irradiated with 1 W of laser power (antibacterial effect corresponding to a log kill of 3). After the optimal laser power was determined, varying irradiation durations (15, 30, and 60 s) were compared in disinfecting E. faecalis. Laser application caused significant reduction in colony-forming unit values (CFU) compared with control samples in the 17% ethylenediaminetetraacetic acid (EDTA) group. The results of bacteria counts showed that 1 W with 30 s of irradiation with a 1940-nm thulium fiber laser was the optimal dose for safely achieving maximal bactericidal effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Schilder H (2006) Filling root canals in three dimensions. J Endod 32(4):281–290

    Article  PubMed  Google Scholar 

  2. Siqueira JF (2001) Strategies to treat infected root canals. J Calif Dental Assoc 29(12):825–837

    Google Scholar 

  3. Stabholz A, Sahar-Helft S, Moshonov J (2004) Lasers in endodontics. Dent Clin N Am 48:809–832

    Article  PubMed  Google Scholar 

  4. Baumgartner JC (2004) Microbiological and molecular analysis of endodontic infections. Endod Top 7:35–51

    Article  Google Scholar 

  5. Berutti E (1997) Penetration ability of different irrigants into dentinal tubules. J Endod. 23(12):725–727

    Article  CAS  PubMed  Google Scholar 

  6. Peters LB, Wesselink PR (2002) Periapical healing of endodontically treated teeth in one and two visits obturated in the presence or absence of detectable microorganisms. Int Endod J 35(8):660–667

    Article  CAS  PubMed  Google Scholar 

  7. Kimura Y, Wilder-Smith P, Matsumoto K (2000) Lasers in endodontics: a review. Int Endo J 33:173–185

    Article  CAS  Google Scholar 

  8. Moritz A, Jakolitsch S, Goharkhay K, Schoop U, Kluger W, Mallinger R, Sperr W, Georgopoulos A (2000) Morphologic changes correlating to different sensitivities of Escherichia coli and Enterococcus faecalis to Nd:YAG laser irradiation through dentin. Lasers Surg Med 26:250–261

    Article  CAS  PubMed  Google Scholar 

  9. Sjogren U, Figdor D, Persson S, Sundqvist G (1997) Influence of infection at the time of root filling on the outcome of endodontic treatment of teeth with apical periodontitis. Int Endod J 30(5):297–306

    Article  CAS  PubMed  Google Scholar 

  10. Kimura Y, Wilder-Smith P, Matsumoto K (2000) Lasers in endodontics: a review. Int Endo J 33:173–185

    Article  CAS  Google Scholar 

  11. Schoop U, Kluger W, Moritz A, Nedjelik N, Georgopoulos A, Sperr W (2004) Bactericidal effect of different laser systems in the deep layers of dentin. Lasers Surg Med 35:111–116

    Article  PubMed  Google Scholar 

  12. Ando N, Hoshino E (1990) Predominant obligate anaerobes invading the deep layers of root canal dentine. Int Endod J 23(1):20–27

    Article  CAS  PubMed  Google Scholar 

  13. Haapasalo M, Orstavik D (1987) In vitro infection and disinfection of dentinal tubules. J Dent Res 66(8):1375–1379

    Article  CAS  PubMed  Google Scholar 

  14. Hardee MW, Miserendino LJ, Kos W, Walia H (1994) Evaluation of the antibacterial effects of intracanal Nd:YAG laser irradiation. J Endod. 20(8):377–380

    Article  CAS  PubMed  Google Scholar 

  15. Gutknecht N, Moritz A, Conrads G, Sievert T, Lampert F (1996) Bactericidal effect of the Nd:YAG laser in vitro root canals. J Clin Las Med Surg 14(2):77–80

    CAS  Google Scholar 

  16. Moritz A, Gutknecht N, Schoop U, Goharkhay K, Doertbudak O, Sperr W (1997) Irradiation of infected root canals with a diode laser in vivo: results of microbiological examinations. Lasers Surg Med 21(3):221–226

    Article  CAS  PubMed  Google Scholar 

  17. Gutknecht N, Alt T, Slaus GA (2002) Clinical comparison of the bactericidal effect of the diode laser and 5% sodium hypochlorite in necrotic root canals. J Oral Laser Appl 2(3):151–157

    Google Scholar 

  18. Moritz A, Doertbudak O, Gutknecht N, Goharkhay K, Schoop U, Sperr W (1997) Nd:YAG laser irradiation of infected root canals in combination with microbiological examinations. J Am Dent Assoc 128(11):1525–1530

    Article  CAS  PubMed  Google Scholar 

  19. Ramsköld L, Fong C, Strömberg T (1997) Thermal effects and antibacterial properties of energy levels required to sterilize stained root canals with an Nd:YAG laser. J Endod 23(2):96–100

    Article  PubMed  Google Scholar 

  20. Franzen R, Gutknecht N, Falken S, Heussen N, Meister J (2010) Bactericidal effect of a Nd:YAG laser on Enterococcus faecalis at pulse durations of 15 and 25 ms in dentine depths of 500 and 1,000 μm. Lasers Med Sci 26:95–101

    Article  PubMed  Google Scholar 

  21. Folwaczny M, Mehl A, Jordan C, Hickel R (2002) Antibacterial effects of pulsed Nd:YAG laser radiation at different energy settings in root canals. J, Endod 28(1):24–29

    Article  Google Scholar 

  22. Moshonov J, Orstavik D, Yamauchi S, Pettiette M, Trope M (1995) Nd:YAG laser irradiation in root canal disinfection. Endod Dent Traumatol 11(5):220–224

    Article  CAS  PubMed  Google Scholar 

  23. Berkiten M (2000) Comparative evaluation of antibacterial effects of Nd:YAG laser irradiation in root canals and dentinal tubules. J Endod 26:268–270

    Article  CAS  PubMed  Google Scholar 

  24. Beer F, Buchmair A, Wernisch J, Georgopoulos A (2012) Moritz a comparison of two diode lasers on bactericidity in root canals—an in vitro study. Lasers Med Sci 27(2):361–364

    Article  PubMed  Google Scholar 

  25. Hmud R, Kahler WA, Walsh LJ (2010) Temperature changes accompanying near infrared diode laser endodontic treatment of wet canals. J Endod. 36(5):908–911

    Article  PubMed  Google Scholar 

  26. George R, Walsh LJ (2008) Apical extrusion of root canal irrigants when using Er:YAG and Er,Cr:YSGG lasers with optical fibers: an in vitro dye study. J Endod 34(6):706–708

    Article  PubMed  Google Scholar 

  27. Sahar-Helft SS, Stabholtz A, Moshonov J, Gutkin V, Redenski I, Steinberg D (2013) Effect of Er:YAG laser-activated irrigation solution on Enterococcus faecalis biofilm in an ExVivo root canal model. Photomed Laser Surg 31(7):334–341

    Article  CAS  PubMed  Google Scholar 

  28. Folwaczny M, Aggstaller H, Mehl A, Hickel R (2003) Removal of bacterial endotoxin from root surface with Er:YAG laser. Am J Dent 16(1):3–5

    PubMed  Google Scholar 

  29. Kimura Y, Yonaga Y, Murakoshi M, Yokoyama K, Watanabe H, Matsumoto K (2003) Histopathological study of the effects of Er:YAG laser irradiation on root canals in rats. Int Congr Ser 1248:281–284

    Article  Google Scholar 

  30. Mehl A, Folwaczny M, Haffner C (1999) Hickel RBactericidal effects of 2.94 um Er:YAG- laser irradiation in dental root canals. J. Endo 25(7):490–493

    Article  CAS  Google Scholar 

  31. Jelínková H, Dostálová T, Dušková J, Krátky M, Miyagi M, Shoji S, Sulc J, Nemec M (1999) Er:YAG and alexandrite laser radiation propagation in root canal and its effect on bacteria. J Clin Laser Med Surg 17(6):267–272

    PubMed  Google Scholar 

  32. Schoop U, Barylyak A, Goharkhay K, Beer F, Wernisch J, Georgopoulos A, Sperr W, Moritz A (2009) The impact of an erbium, chromium:yttrium-scandium-gallium-garnet laser with radial-firing tips on endodontic treatment. Lasers Med Sci 24:59–65

    Article  CAS  PubMed  Google Scholar 

  33. Schoop U, Kluger W, Moritz A, Nedjelik N, Georgopoulos A, Sperr W (2004) Bactericidal effects of different laser systems in the deep layers of dentin. Lasers Surg Med 35(2):111–116

    Article  PubMed  Google Scholar 

  34. Esteves-Oliveira M, de Guglielmi CA, Ramalho KM, Arana-Chavez VE, de Eduardo CP (2010) Comparison of dentin root canal permeability and morphology after irradiation with Nd:YAG, Er:YAG, and diode lasers. Lasers Med Sci 25:755–760

    Article  PubMed  Google Scholar 

  35. Arnabat J, Escribano C, Fenosa A, Vinuesa T, Gay-Escoda C, Berini L, Viñas M (2010) Bactericidal activity of erbium, chromium: yttrium–scandium–gallium–garnet laser in root canals. Lasers Med Sci 25:805–810

    Article  PubMed  Google Scholar 

  36. Blankenau RJ, Kelsey WP, Powell GL, Cavel WT, Anderson DM (1994) Power density and external temperature of laser-treated root canals. JClin Laser Med Surg 12(1):17–19

    CAS  Google Scholar 

  37. Yamazaki Y, Kobayashi K, Tsuchida M, Ozawa T, Arai T (1999) Temperature elevation on the root surface by intracanal CO2 laser irridation. Int Dent J 41(7):324–340

    Google Scholar 

  38. Eriksson R (1984) Temperature threshold levels for heat-induced bonetissue injury: a vital microscobic study in rabbit. J Prosthet Dent 50(1):101–107

    Article  Google Scholar 

  39. Miserendino LS (1995) Lasers in dentistry. Quintessence Publishing Co. Inc, IL

  40. Zahed M (2013) Ethylenediaminetetraacetic acid in endodontics. Eur J Dent 7(1):135–142

    Google Scholar 

  41. Lan. WH temperature elevation on the root surface during Nd:YAG laser irradiation in the root canal. J Endod 1999; 25(3): 155–156

  42. Mehl A, Kremers L, Salzmann K, Hickel R (1997) 3D volume-ablation rate and thermal side effects with the Er:YAG and Nd:YAG laser. Dent Mater 13(4):246–251

    Article  CAS  PubMed  Google Scholar 

  43. Rooney J, Midda M, Leeming J (1994) A laboratory investigation of the bactericidal effect of Nd:YAG laser. Br Dent J 176:61–64

    Article  CAS  PubMed  Google Scholar 

  44. Jukic S, Mileteic I, Bozic C, Amic I, CKalenik S (2004) Antibacterial effects of Nd:YAG laser in root canal samples: in vitro study. Acta Clin Croat 43:3–7

    Google Scholar 

  45. Wang X, Sun Y, Kimura Y, Kinoshita J, Ishizaki NT, Matsumoto K (2005) Effects of diode laser irradiation on smear layer removal from root canal walls and apical leakage after obturation. Photomed Laser Surg 23(6):575–581

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study is supported by Boğaziçi University Research Fund (Project No. BAP 7142/13XD2) and founding source had no such involvement for the conduct of the research and preparation of the article. In addition to this, the authors declare that they have no conflict of interest. We are thankful to Ahmet Turan Talas who provide us with an opportunity to use 3D digital microscope, Hirox, KH-7700 in our study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayse Sena Kabas Sarp.

Ethics declarations

This study was conducted with the approval of the Bogaziçi University Human Research Ethics Committee (INAREK No. 2015/57-15.06.2015). All procedures in the study were performed in accordance with the ethical standards of the national research committee and with the 1964 Declaration of Helsinki and its later amendments or comparable ethical standards.

The study is funded by Bogaziçi University Research Fund (Grant No. BAP7142/13XD2), but founding source had no such involvement for the conduct of the research and preparation of the article. In addition to this, the authors declare that they have no conflict of interest. Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarp, A.S.K., Gulsoy, M. Determining the optimal dose of 1940-nm thulium fiber laser for assisting the endodontic treatment. Lasers Med Sci 32, 1507–1516 (2017). https://doi.org/10.1007/s10103-017-2272-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-017-2272-0

Keywords

Navigation