Skip to main content
Log in

Photobiomodulation therapy in the modulation of inflammatory mediators and bradykinin receptors in an experimental model of acute osteoarthritis

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

The objective of this study was to evaluate the effects of photobiomodulation therapy (PBMT) on inflammatory indicators, i.e., inflammatory mediators (TNF-α and CINC-1), and pain characterized by hyperalgesia and B1 and B2 receptor activation at 6, 24, and 48 h after papain-induced osteoarthritis (OA) in rats. Fifty-four rats were subjected to hyperalgesia evaluations and then divided randomly into three groups—a control group and two groups OA and OA PBMT group by using laser parameters at wavelength (808 nm), output power (50 mW), energy per point (4 Joules), power density (1.78 W/cm2), laser beam (0.028 cm2), and energy density (144 J/cm2)—the induction of osteoarthritis was then performed with 20-μl injections of a 4 % papain solution dissolved in 10 μl of saline solution, to which 10 μl of cysteine solution (0.03 M). The statistical analysis was performed using two-way ANOVA with Bonferroni’s post hoc test for comparisons between the 6, 24, and 48 h and team points within each group, and between the control, injury, and PBMT groups, and p < 0.05 was considered to indicate a significant difference. The hyperalgesia was evaluated at 6, 24, and 48 h after the injury. PBMT at a wavelength of 808 nm and doses of 4 J, administered afterward, promotes increase at the threshold of pressure stimulus at 6, 24, and 48 h after application and promote cytokine attenuation levels (TNF and CINC-1) and bradykinin receptor (B1 and B2) along the experimental period. We conclude that photobiomodulation therapy was able to promote the reduction of proinflammatory cytokines such as TNF-α and CINC-1, to reduce the gene and protein expression of the bradykinin receptor (B1 and B2), as well as increasing the stimulus response threshold of pressure in an experimental model of acute osteoarthritis

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Goldring MB, Goldring SR (2007) Osteoarthritis. J Cell Physiol 213:626–634

    Article  CAS  PubMed  Google Scholar 

  2. De Falco L, Fioravanti A, Galeazzi M, Tenti S (2013) Bradykinin and its role in osteoarthritis. Reumatismo 65:97–104

    Article  PubMed  Google Scholar 

  3. Uth K, Trifonov D (2014) Stem cell application for osteoarthritis in the knee joint: a minireview. World J Stem Cells 6:629–636

    Article  PubMed  PubMed Central  Google Scholar 

  4. Goldring MB, Otero M (2011) Inflammation in osteoarthritis. Curr Opin Rheumatol 23:471–478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chen S, Zhou Y, Li J, Shan LQ, Fan QY (2012) The effect of bradykinin B2 receptor polymorphisms on the susceptibility and severity of osteoarthritis in a Chinese cohort. J Biomed Biotechnol 2012:597637

    PubMed  PubMed Central  Google Scholar 

  6. Valenti C, Giuliani S, Cialdai C, Tramontana M, Maggi CA (2012) Fasitibant chloride, a kinin B2 receptor antagonist, and dexamethasone interact to inhibit carrageenan-induced inflammatory arthritis in rats. Br J Pharmacol 166:1403–1410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Meini S, Cucchi P, Catalani C, Bellucci F, Giuliani S, Maggi CA (2011) Bradykinin and B2 receptor antagonism in rat and human articular chondrocytes. Br J Pharmacol 162:611–622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Meini S, Maggi CA (2008) Knee osteoarthritis: a role for bradykinin? Inflamm Res 57:351–361

    Article  CAS  PubMed  Google Scholar 

  9. Sharma JN, Buchanan WW (1994) Pathogenic responses of bradykinin system in chronic inflammatory rheumatoid disease. Exp Toxicol Pathol 46:421–433

    Article  CAS  PubMed  Google Scholar 

  10. Damas J, Remacle-Volon G (1992) Influence of a long-acting bradykinin antagonist, Hoe 140, on some acute inflammatory reactions in the rat. Eur J Pharmacol 211:81–86

    Article  CAS  PubMed  Google Scholar 

  11. Sharma JN, Wirth KJ (1996) Inhibition of rats adjuvant arthritis by a bradykinin antagonist Hoe 140 and its influence on kallikreins. Gen Pharmacol 27:133–136

    Article  CAS  PubMed  Google Scholar 

  12. Cialdai C, Giuliani S, Valenti C, Tramontana M, Maggi CA (2009) Effect of intra-articular -articular 4- (S) -Amino-5- (4- {4-[2,4-dichloro-3- (2,4- dimethyl-8 quinolyloxymethyl) phenylsulfonamido]-tetrahydro- 2H-4-pyranylcarbonyl} piperazino) -5 oxopentyl] (trimethyl) ammonium chloride hydrochloride (MEN16132), a kinin B2 receptor antagonist, on nociceptive response in monosodium iodoacetate-induced experimental osteoarthritis in rats. J Pharmacol Exp Ther 331:1025–1032

    Article  CAS  PubMed  Google Scholar 

  13. Valenti C, Giuliani S, Cialdai C, Tramontana M, Maggi CA (2010) Anti-inflammatory effect of MEN16132, a kinin B2 receptor antagonist, and dexamethasone on carrageenan-induced knee joint arthritis in rats. Br J Pharmacol 161:1616–1627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Albertini R, Villaverde AB, Aimbire F, Bjordal J, Brugnera A, Mittmann J, Silva JA, Costa M (2008) Cytokine mRNA expression is decreased in the subplantar muscle of rat paw subjected to carrageenan-induced inflammation after low-level laser therapy. Photomed Laser Surg 26:19–24

    Article  CAS  PubMed  Google Scholar 

  15. Albertini R, Aimbire F, Villaverde AB, Silva JA Jr, Costa MS (2007) COX-2 mRNA expression decreases in the subplantar muscle of rat paw subjected to carrageenan-induced inflammation after low level laser therapy. Inflamm Res 56:228–229

    Article  CAS  PubMed  Google Scholar 

  16. Alves AC, Vieira R, Leal-Junior E, dos Santos S, Ligeiro AP, Albertini R, Junior J, de Carvalho P (2013) Effect of low-level laser therapy on the expression of inflammatory mediators and on neutrophils and macrophages in acute joint inflammation. Arthritis Res Ther 15:R116

    Article  PubMed  PubMed Central  Google Scholar 

  17. dos Santos SA, Alves AC, Leal-Junior EC, Albertini R, Vieira RP, Ligeiro AP, Junior JA, de Carvalho PT (2014) Comparative analysis of two low-level laser doses on the expression of inflammatory mediators and on neutrophils and macrophages in acute joint inflammation. Lasers Med Sci 29:1051–1058

    Article  PubMed  Google Scholar 

  18. Alves AC, Albertini R, dos Santos SA, Leal-Junior EC, Santana E, Serra AJ, Silva JA Jr, de Carvalho PT (2014) Effect of low-level laser therapy on metalloproteinase MMP-2 and MMP-9 production and percentage of collagen types I and III in a papain cartilage injury model. Lasers Med Sci 29:911–919

    Article  PubMed  Google Scholar 

  19. Basso FG, Pansani TN, Soares DG, Scheffel DL, Bagnato VS, de Souza Costa CA, Hebling J (2015) Biomodulation of inflammatory cytokines related to oral mucositis by low-level laser therapy. Photochem Photobiol 91:952–956

    Article  CAS  PubMed  Google Scholar 

  20. Esmaeelinejad M, Bayat M (2013) Effect of low-level laser therapy on the release of interleukin-6 and basic fibroblast growth factor from cultured human skin fibroblasts in normal and high glucose mediums. J Cosmet Laser Ther 15:310–317

    Article  PubMed  Google Scholar 

  21. Fukuda TY, Tanji MM, Silva SR, Sato MN, Plapler H (2013) Infrared low-level diode laser on inflammatory process modulation in mice: pro- and anti-inflammatory cytokines. Lasers Med Sci 28:1305–1313

    Article  PubMed  Google Scholar 

  22. Oliveira RG, Ferreira AP, Côrtes AJ, Aarestrup BJ, Andrade LC, Aarestrup FM (2013) Low-level laser reduces the production of TNF-α, IFN-γ, and IL-10 induced by OVA. Lasers Med Sci 28:1519–1525

    Article  PubMed  Google Scholar 

  23. Casalechi HL, Leal-Junior EC, Xavier M, Silva JA Jr, de Carvalho PT, Aimbire F, Albertini R (2013) Low-level laser therapy in experimental model of collagenase-induced tendinitis in rats: effects in acute and chronic inflammatory phases. Lasers Med Sci 28:989–995

    Article  PubMed  Google Scholar 

  24. Bortone F, Santos HA, Albertini R, Pesquero JB, Costa MS, Silva JA Jr (2008) Low level laser therapy modulates kinin receptors mRNA expression in the subplantar muscle of rat paw subjected to carrageenan-induced inflammation. Int Immunopharmacol 8:206–210

    Article  CAS  PubMed  Google Scholar 

  25. Manchini MT, Serra AJ, Feliciano Rdos S, Santana ET, Antônio EL, de Tarso Camillo de Carvalho P, Montemor J, Crajoinas RO, Girardi AC, Tucci PJ, Silva JA Jr (2014) Amelioration of cardiac function and activation of anti-inflammatory vasoactive peptides expression in the rat myocardium by low level laser therapy. PLoS One 9, e101270

    Article  PubMed  PubMed Central  Google Scholar 

  26. Silva MP, Bortone F, Silva MP, Araújo TR, Costa MS, Silva Júnior JA (2011) Inhibition of carrageenan-induced expression of tissue and plasma prekallikreins mRNA by low-level laser therapy in a rat paw edema model. Rev Bras Fisioter 15:1–7

    Article  PubMed  Google Scholar 

  27. Guerrero AT, Verri WA Jr, Cunha TM, Silva TA, Rocha FA, Ferreira SH et al (2006) Hypernociception elicited by tibio-tarsal joint flexion in mice: a novel experimental arthritis model for pharmacological screening. Pharmacol Biochem Behav 84:244–251

    Article  CAS  PubMed  Google Scholar 

  28. Assis L, Milares LP, Almeida T, Tim C, Magri A, Fernandes KR, Medalha C, Renno AC (2016) Aerobic exercise training and low-level laser therapy modulate inflammatory response and degenerative process in an experimental model of knee osteoarthritis in rats. Osteoarthr Cartil 24:169–177

    Article  CAS  PubMed  Google Scholar 

  29. Ferreira de Meneses SR, Hunter DJ, Young Docko E, Pasqual Marques A (2015) Effect of low-level laser therapy (904 nm) and static stretching in patients with knee osteoarthritis: a protocol of randomised controlled trial. BMC Musculoskelet Disord 16:252

    Article  PubMed  PubMed Central  Google Scholar 

  30. Cunha TM, Verri WA Jr, Fukada SY, Guerrero AT, Santodomingo-Garzón T, Poole S, Parada CA, Ferreira SH, Cunha FQ (2007) TNF-alpha and IL-1beta mediate inflammatory hypernociception in mice triggered by B1 but not B2 kinin receptor. Eur J Pharmacol 573:221–229

    Article  CAS  PubMed  Google Scholar 

  31. Santodomingo-Garzón T, Cunha TM, Verri WA Jr, Valério DAR, Parada CA, Poole S, Ferreira SH, Cunha FQ (2006) Atorvastatin inhibits inflammatory hypernociception. Br J Pharmacol 149:14–22

    Article  PubMed  PubMed Central  Google Scholar 

  32. Cunha TM, Verri WA Jr, Schivo IR, Napimoga MH, Parada CA, Poole S, Teixeira MM, Ferreira SH, Cunha FQ (2008) Crucial role of neutrophils in the development of mechanical inflammatory hypernociception. J Leukoc Biol 83:824–832

    Article  CAS  PubMed  Google Scholar 

  33. Ferreira SH, Lorenzetti BB, Poole S (1993) Bradykinin initiates cytokine-mediated inflammatory hyperalgesia. Br J Pharmacol 110:1227–1231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author contributions

VO, PTCC, and AJS wrote the paper. Statistical analyses: ELJ, RLM, and PTCC. The design and performance of the experiments were overseen by Oversaw: VO, EAPS, RCP, and ACM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulo de Tarso Camillo de Carvalho.

Ethics declarations

Role of the funding source

This work was supported by grants from the São Paulo Research Foundation (FAPESP, grant number (2015/13677-4) and the National Council for Scientific and Technological (grant number 309065/2015-1).

Conflict of interest

The authors have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Oliveira, V.L.C., Silva, J.A., Serra, A.J. et al. Photobiomodulation therapy in the modulation of inflammatory mediators and bradykinin receptors in an experimental model of acute osteoarthritis. Lasers Med Sci 32, 87–94 (2017). https://doi.org/10.1007/s10103-016-2089-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-016-2089-2

Keywords

Navigation