Skip to main content

Advertisement

Log in

Low-level laser reduces the production of TNF-α, IFN-γ, and IL-10 induced by OVA

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

Delayed, or type IV, hypersensitivity reactions are a useful model to study the effects of new substances on the immune system. In this study, the experimental model of the delayed type hypersensitivity (DTH) reaction to ovalbumin (OVA) was used to evaluate the immunomodulating effects of low-level laser therapy (LLLT), which is used as an adjuvant therapy in medicine, dentistry, and physical therapy because of its potential anti-inflammatory and analgesic effects observed in several studies. The effects of LLLT (λ 780 nm, 0.06 W/cm2 of radiation, and fluency of 3.8 J/cm2) in reaction to ovalbumin in Balb/C mice were examined after the induction phase of the hypersensitivity reaction. The animals treated with azathioprine (AZA), the animals that received a vehicle instead of ovalbumin, and those not immunized served as controls (n = 6 for each group). Footpad thickness measurements and hematoxylin–eosin histopathological exams were performed. Proliferation tests were also performed (spontaneous, in the presence of concanavalin A and ovalbumin) to determine the production in mononuclear cells cultures of tumor necrosis factor-alpha (TNF-α), INF-γ, and IL-10. In the group of animals irradiated with lasers and in the group treated with AZA, footpad thickness measurements were significantly reduced in comparison to the control group (p < 0.05). This reduction was accompanied by a very significant reduction in the density of the inflammatory infiltrate and by a significant reduction in the levels of TNF-α, INF-γ, and IL-10. LLLT radiation was shown to have an immunomodulating effect on DTH to OVA in Balb/C mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Albertini R, Aimbire FS, Correa FI, Ribeiro W, Cogo JC, Antunes E et al (2004) Effects of different protocol doses of low power gallium-aluminum-arsenate (Ga-Al-As) laser radiation (650 nm) on carrageenan induced rat paw ooedema. J Photochem Photobiol B 74(2–3):101–107

    Article  CAS  PubMed  Google Scholar 

  2. Albertini R, Villaverde AB, Aimbire F, Salgado MA, Bjordal JM, Alves LP et al (2007) Anti-inflammatory effects of low-level laser therapy (LLLT) with two different red wavelengths (660 and 684 nm) in carrageenan-induced rat paw edema. J Photochem Photobiol B 89(1):50–55

    Article  CAS  PubMed  Google Scholar 

  3. Bjordal JM, Johnson MI, Iversen V, Aimbire F, Lopes-Martins RA (2006) Photoradiation in acute pain: a systematic review of possible mechanisms of action and clinical effects in randomized placebo-controlled trials. Photomed Laser Surg 24(2):158–168

    Article  CAS  PubMed  Google Scholar 

  4. Mozzati M, Martinasso G, Cocero N et al (2011) Influence of superpulsed laser therapy on healing process following tooth extraction. Photomed Laser Surg 29(8):565–571

    Article  PubMed  Google Scholar 

  5. Brill GE, Budnik IA, Gasparian LV, Shenkman B, Savion N, Varon D (2008) Influence of laser radiation of the whole blood in vitro on adhesion and aggregation of blood platelets. Vopr Kurortol Fizioter Lech Fiz Kult 1:15–18

    PubMed  Google Scholar 

  6. Enwemeka CS (2004) Therapeutic light. Rehab Manag 17(1):20–25, 56-7

    PubMed  Google Scholar 

  7. Fujimaki Y, Shimoyama T, Liu Q, Umeda T, Nakaji S, Sugawara K (2003) Low-level laser irradiation attenuates production of reactive oxygen species by human neutrophils. J Clin Laser Med Surg 21(3):165–170

    Article  PubMed  Google Scholar 

  8. Beeton C, Chandy KG (2007) Induction and monitoring of active delayed type hypersensitivity (DTH) in rats. J Vis Exp 6:237

    PubMed  Google Scholar 

  9. Jacysyn JF, Abrahamsohn IA, Macedo MS (2001) Modulation of delayed-type hypersensitivity during the time course of immune response to a protein antigen. Immunology 102(3):373–379

    Article  CAS  PubMed  Google Scholar 

  10. Pelletier RP, Bickerstaff AA, Adams PW, Orosz CG (2007) Evaluation of immune regulation in transplant patients using the trans vivo delayed type hypersensitivity assay. Hum Immunol 68(6):514–522

    Article  CAS  PubMed  Google Scholar 

  11. Kobayashi K, Kaneda K, Kasama T (2001) Immunopathogenesis of delayed-type hypersensitivity. Microsc Res Tech 53(4):241–245

    Article  CAS  PubMed  Google Scholar 

  12. Phadke K, Carroll J, Nanda S (1982) Effects of various anti-inflammatory drugs on type II collagen-induced arthritis in rats. Clin Exp Immunol 47(3):579–586

    CAS  PubMed  Google Scholar 

  13. Yamashita K, Sakai M, Takemoto N, Tsukimoto M, Uchida K, Yajima H et al (2009) Attenuation of delayed-type hypersensitivity by fullerene treatment. Toxicology 261(1–2):19–24

    Article  CAS  PubMed  Google Scholar 

  14. Mimori T (2009) Immunosuppressants. Nippon Rinsho 67(3):582–587

    PubMed  Google Scholar 

  15. Morris RE (1995) Mechanisms of action of new immunosuppressive drugs. Ther Drug Monit 17(6):564–569

    Article  CAS  PubMed  Google Scholar 

  16. Craig JC, Webster AC, McDonald SP (2009) The case of azathioprine versus mycophenolate. Do different drugs really cause different transplant outcomes? Transplantation 87(6):803–804

    Article  PubMed  Google Scholar 

  17. Sakihama H (1995) Effect of a helium-neon laser on cutaneous inflammation. Kurume Med J 42(4):299–305

    Article  CAS  PubMed  Google Scholar 

  18. Persina IS, Rakcheev AP (1984) Effect of helium-neon laser radiation on the morphology of experimental allergic contact dermatitis. Biull Eksp Biol Med 97(5):603–605

    Article  CAS  PubMed  Google Scholar 

  19. Tsvetkova GM, Rakcheev AP, Persina IS (1984) Morphological changes in the normal skin of guinea pigs exposed to a helium-neon laser. Vestn Dermatol Venerol 3:14–17

    PubMed  Google Scholar 

  20. Rochkind S, Rousso M, Nissan M, Villarreal M, Barr-Nea L, Rees DG (1989) Systemic effects of low-power laser irradiation on the peripheral and central nervous system, cutaneous wounds, and burns. Lasers Surg Med 9(2):174–182

    Article  CAS  PubMed  Google Scholar 

  21. Inoue K, Nishioka J, Hukuda S (1989) Suppressed tuberculin reaction in guinea pigs following laser irradiation. Lasers Surg Med 9(3):271–275

    Article  CAS  PubMed  Google Scholar 

  22. Basford JR (1995) Low intensity laser therapy: still not an established clinical tool. Lasers Surg Med 16(4):331–342

    Article  CAS  PubMed  Google Scholar 

  23. Basford JR (1990) The clinical status of low energy laser therapy in 1989. J Laser Appl 2(1):57–63

    Article  CAS  PubMed  Google Scholar 

  24. Enwemeka CS (2005) Evidence-based photomedicine. Photomed Laser Surg 23(4):353

    Article  PubMed  Google Scholar 

  25. Nevins TE, Thomas W (2009) Quantitative patterns of azathioprine adherence after renal transplantation. Transplantation 87(5):711–718

    Article  CAS  PubMed  Google Scholar 

  26. Goldsmith P, Lennox G, Bhalla N (2008) Azathioprine prescribing in neurology. J Neurol 255(6):791–795

    Article  CAS  PubMed  Google Scholar 

  27. Sroka R, Schaffer M, Fuchs C, Pongratz T, Schrader-Reichard U, Busch M et al (1999) Effects on the mitosis of normal and tumor cells induced by light treatment of different wavelengths. Lasers Surg Med 25(3):263–271

    Article  CAS  PubMed  Google Scholar 

  28. Schindl A, Schindl M, Pernerstorfer-Schon H, Schindl L (2000) Low-intensity laser therapy: a review. J Investig Med 48(5):312–326

    CAS  PubMed  Google Scholar 

  29. Enwemeka CS (2005) Low level laser therapy is not low. Photomed Laser Surg 23(6):529–530

    Article  PubMed  Google Scholar 

  30. Enwemeka CS (2008) Standard parameters in laser phototherapy. Photomed Laser Surg 26(5):411

    Article  PubMed  Google Scholar 

  31. Enwemeka CS (2009) Intricacies of dose in laser phototherapy for tissue repair and pain relief. Photomed Laser Surg 27(3):387–393

    Article  PubMed  Google Scholar 

  32. de Oliveira RG, Aarestrup FM, Miranda C et al (2010) Lowl-level laser therapy reduces delayed hypersensitivy reaction to ovalbumin in Balb/C mice. Photomed Laser Surg 28(6):773–777

    Article  PubMed  Google Scholar 

  33. Brosseau L, Robinson V, Wells G, Debie R, Gam A, Harman K et al (2005) Low level laser therapy (Classes I, II and III) for treating rheumatoid arthritis. Cochrane Database Syst Rev 4:CD002049

    PubMed  Google Scholar 

  34. Sandoval MC, Mattiello-Rosa SM, Soares EG, Parizotto NA (2009) Effects of Laser on the synovial fluid in the inflammatory process of the knee joint of the rabbit. Photomed Laser Surg

  35. Ishigame H, Nakajima A, Saijo S, Komiyama Y, Nambu A, Matsuki T et al (2006) The role of TNFalpha and IL-17 in the development of excess IL-1 signaling-induced inflammatory diseases in IL-1 receptor antagonist-deficient mice. Ernst Schering Res Found Workshop 56:129–153

    Article  PubMed  Google Scholar 

  36. Tanaka S, Sakaguchi S (2005) Regulatory T cell and autoimmune diseases. Nihon Rinsho Meneki Gakkai Kaishi 28(5):291–299

    Article  PubMed  Google Scholar 

  37. Wonderlich J, Shearer G, Livingstone A, Brooks A (2006) Induction and measurement of cytotoxic T lymphocyte activity. Curr Protoc Immunol 3(3):11

    PubMed  Google Scholar 

  38. Aimbire F, Albertini R, Pacheco MT, Castro-Faria-Neto HC, Leonardo PS, Iversen VV et al (2006) Low-level laser therapy induces dose-dependent reduction of TNFalpha levels in acute inflammation. Photomed Laser Surg 24(1):33–37

    Article  CAS  PubMed  Google Scholar 

  39. Srinivas TR, Meier-Kriesche HU, Kaplan B (2005) Pharmacokinetic principles of immunosuppressive drugs. Am J Transplant 5(2):207–217

    Article  CAS  PubMed  Google Scholar 

  40. Zhang J, Xiao X, Liu W, Demirci G, Li XC (2009) Inhibitory receptors of the immune system: functions and therapeutic implications. Cell Mol Immunol 6(6):407–414

    Article  CAS  PubMed  Google Scholar 

  41. Bettini M, Vignali DA (2009) Regulatory T cells and inhibitory cytokines in autoimmunity. Curr Opin Immunol 21(6):612–618

    Article  CAS  PubMed  Google Scholar 

  42. Brook MO, Wood KJ, Jones ND (2006) The impact of memory T cells on rejection and the induction of tolerance. Transplantation 82(1):1–9

    Article  PubMed  Google Scholar 

  43. Cone RE, Li X, Sharafieh R, O'Rourke J, Vella AT (2007) The suppression of delayed-type hypersensitivity by CD8+ regulatory T cells requires interferon-gamma. Immunology 120(1):112–119

    Article  CAS  PubMed  Google Scholar 

  44. Hernandez-Pando R, Rook GA (1994) The role of TNF-alpha in T-cell-mediated inflammation depends on the Th1/Th2 cytokine balance. Immunology 82(4):591–595

    CAS  PubMed  Google Scholar 

  45. Kimber I, Pichowski JS, Basketter DA, Dearman RJ (1999) Immune responses to contact allergens: novel approaches to hazard evaluation. Toxicol Lett 106(2–3):237–246

    Article  CAS  PubMed  Google Scholar 

  46. Ohta A, Abergel RP, Uitto J (1987) Laser modulation of human immune system: inhibition of lymphocyte proliferation by a gallium-arsenide laser at low energy. Lasers Surg Med 7(2):199–201

    Article  CAS  PubMed  Google Scholar 

  47. Hope JC, Campbell F, Hopkins SJ (2000) Deficiency of IL-2 or IL-6 reduces lymphocyte proliferation, but only IL-6 deficiency decreases the contact hypersensitivity response. Eur J Immunol 30(1):197–203

    Article  CAS  PubMed  Google Scholar 

  48. Funk JO, Kruse A, Neustock P, Kirchner H (1993) Helium-neon laser irradiation induces effects on cytokine production at the protein and the mRNA level. Exp Dermatol 2(2):75–83

    Article  CAS  PubMed  Google Scholar 

  49. Funk JO, Kruse A, Kirchner H (1992) Cytokine production after helium-neon laser irradiation in cultures of human peripheral blood mononuclear cells. J Photochem Photobiol B 16(3–4):347–355

    Article  CAS  PubMed  Google Scholar 

  50. Fulop AM, Dhimmer S, Deluca JR, Johanson DD, Lenz RV, Patel KB et al (2009) A meta-analysis of the efficacy of phototherapy in tissue repair. Photomed Laser Surg 27(5):695–702

    Article  PubMed  Google Scholar 

  51. Kataranovski M, Draskovic-Pavlovic B, Jovcic G, Milojevic G, Todorovic V, Colic M et al (2001) Peripheral blood granulocyte activity following contact sensitization of rats with dinitrochlorobenzene. Toxicology 162(2):121–136

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando M. Aarestrup.

Additional information

This study was supported by Fundação de Amparo a Pesquisa de Minas Gerais (FAPEMIG).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oliveira, R.G., Ferreira, A.P., Côrtes, A.J. et al. Low-level laser reduces the production of TNF-α, IFN-γ, and IL-10 induced by OVA. Lasers Med Sci 28, 1519–1525 (2013). https://doi.org/10.1007/s10103-012-1262-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-012-1262-5

Keywords

Navigation