Skip to main content
Log in

Maximal oxygen uptake and exercise tolerance are improved in rats with heart failure subjected to low-level laser therapy associated with resistance training

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

Exercise tolerance and maximal oxygen uptake (VO2max) are reduced in heart failure (HF). The influence of combined resistance training (RT) and low-level laser therapy (LLLT) on exercise tolerance and VO2max in HF has not yet been explored. The aim of this study was to evaluate the influence of combined RT and LLLT on VO2max and exercise tolerance in rats with HF induced by myocardial infarction (MI). Rats were allocated to sedentary sham (Sed-Sham, n = 12), sedentary heart failure (Sed-HF, n = 9), RT heart failure (RT-HF, n = 7) and RT associated with LLLT heart failure (RT + LLLT-HF, n = 7) groups. After MI or sham surgery, rats underwent a RT and LLLT protocol (applied immediately after RT) for 8 weeks. VO2max and exercise tolerance were evaluated at the end of protocol. HF rats subjected to LLLT combined with RT showed higher VO2basal (41 %), VO2max (40 %), VO2reserve (39 %), run distance (46 %), time to exhaustion (30 %) and maximal velocity (22 %) compared with HF rats that underwent RT alone. LLLT associated with RT improved oxygen uptake and exercise tolerance compared with RT alone in HF rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Conraads VM, Van Craenenbroeck EM, De Maeyer C, Van Berendoncks AM, Beckers PJ, Vrints CJ (2013) Unraveling new mechanisms of exercise intolerance in chronic heart failure: role of exercise training. Heart Fail Rev 18(1):65–77. doi:10.1007/s10741-012-9324-0

    Article  PubMed  Google Scholar 

  2. Francis DP, Shamim W, Davies LC, Piepoli MF, Ponikowski P, Anker SD, Coats AJ (2000) Cardiopulmonary exercise testing for prognosis in chronic heart failure: continuous and independent prognostic value from VE/VCO(2)slope and peak VO(2). Eur Heart J 21(2):154–161. doi:10.1053/euhj.1999.1863

    Article  CAS  PubMed  Google Scholar 

  3. Myers J, Gullestad L, Vagelos R, Do D, Bellin D, Ross H, Fowler MB (2000) Cardiopulmonary exercise testing and prognosis in severe heart failure: 14 mL/kg/min revisited. Am Heart J 139(1):78–84. doi:10.1016/s0002-8703(00)90312-0

    Article  CAS  PubMed  Google Scholar 

  4. Piepoli MF, Guazzi M, Boriani G, Cicoira M, Corra U, Dalla Libera L, Emdin M, Mele D, Passino C, Vescovo G, Vigorito C, Villani GQ, Agostoni P, Working Group 'Exercise Physiology SC, Cardiac Rehabilitation ISoC (2010) Exercise intolerance in chronic heart failure: mechanisms and therapies. Part I Eur J Cardiovasc Prev Rehabil 17(6):637–642

    Article  PubMed  Google Scholar 

  5. Middlekauff HR (2010) Making the case for skeletal myopathy as the major limitation of exercise capacity in heart failure. Circ Heart Fail 3(4):537–546. doi:10.1161/CIRCHEARTFAILURE.109.903773

    Article  PubMed  PubMed Central  Google Scholar 

  6. Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DE Jr, Drazner MH, Fonarow GC, Geraci SA, Horwich T, Januzzi JL, Johnson MR, Kasper EK, Levy WC, Masoudi FA, McBride PE, McMurray JJ, Mitchell JE, Peterson PN, Riegel B, Sam F, Stevenson LW, Tang WH, Tsai EJ, Wilkoff BL, American College of Cardiology F, American Heart Association Task Force on Practice G (2013) 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol 62(16):e147–e239. doi:10.1016/j.jacc.2013.05.019

    Article  PubMed  Google Scholar 

  7. Mandic S, Myers J, Selig SE, Levinger I (2012) Resistance versus aerobic exercise training in chronic heart failure. Curr Heart Fail Rep 9(1):57–64. doi:10.1007/s11897-011-0078-0

    Article  PubMed  Google Scholar 

  8. Piepoli MF, Conraads V, Corra U, Dickstein K, Francis DP, Jaarsma T, McMurray J, Pieske B, Piotrowicz E, Schmid JP, Anker SD, Solal AC, Filippatos GS, Hoes AW, Gielen S, Giannuzzi P, Ponikowski PP (2011) Exercise training in heart failure: from theory to practice. A consensus document of the Heart Failure Association and the European Association for Cardiovascular Prevention and Rehabilitation. Eur J Heart Fail 13(4):347–357. doi:10.1093/eurjhf/hfr017

    Article  PubMed  Google Scholar 

  9. Pu CT, Johnson MT, Forman DE, Hausdorff JM, Roubenoff R, Foldvari M, Fielding RA, Singh MA (2001) Randomized trial of progressive resistance training to counteract the myopathy of chronic heart failure. J Appl Physiol (1985) 90(6):2341–2350

    CAS  Google Scholar 

  10. Arena R, Pinkstaff S, Wheeler E, Peberdy MA, Guazzi M, Myers J (2010) Neuromuscular electrical stimulation and inspiratory muscle training as potential adjunctive rehabilitation options for patients with heart failure. J Cardiopulm Rehabil Prev 30(4):209–223. doi:10.1097/HCR.0b013e3181c56b78

    Article  PubMed  Google Scholar 

  11. Sbruzzi G, Ribeiro RA, Schaan BD, Signori LU, Silva AM, Irigoyen MC, Plentz RD (2010) Functional electrical stimulation in the treatment of patients with chronic heart failure: a meta-analysis of randomized controlled trials. Eur J Cardiovasc Prev Rehabil 17(3):254–260

    PubMed  Google Scholar 

  12. Huang YY, Chen AC, Carroll JD, Hamblin MR (2009) Biphasic dose response in low level light therapy. Dose Response 7(4):358–383. doi:10.2203/dose-response.09-027.Hamblin

    Article  PubMed  PubMed Central  Google Scholar 

  13. Leal-Junior EC, Vanin AA, Miranda EF, de Carvalho PT, Dal Corso S, Bjordal JM (2015) Effect of phototherapy (low-level laser therapy and light-emitting diode therapy) on exercise performance and markers of exercise recovery: a systematic review with meta-analysis. Lasers Med Sci 30(2):925–939. doi:10.1007/s10103-013-1465-4

    Article  PubMed  Google Scholar 

  14. De Marchi T, Leal Junior EC, Bortoli C, Tomazoni SS, Lopes-Martins RA, Salvador M (2012) Low-level laser therapy (LLLT) in human progressive-intensity running: effects on exercise performance, skeletal muscle status, and oxidative stress. Lasers Med Sci 27(1):231–236. doi:10.1007/s10103-011-0955-5

    Article  PubMed  Google Scholar 

  15. Amadio EM, Serra AJ, Guaraldo SA, Silva JA Jr, Antonio EL, Silva F, Portes LA, Tucci PJ, Leal-Junior EC, de Carvalho PT (2015) The action of pre-exercise low-level laser therapy (LLLT) on the expression of IL-6 and TNF-alpha proteins and on the functional fitness of elderly rats subjected to aerobic training. Lasers Med Sci. doi:10.1007/s10103-015-1713-x

    PubMed  Google Scholar 

  16. Hentschke VS, Jaenisch RB, Schmeing LA, Cavinato PR, Xavier LL, Dal Lago P (2013) Low-level laser therapy improves the inflammatory profile of rats with heart failure. Lasers Med Sci 28(3):1007–1016. doi:10.1007/s10103-012-1190-4

    Article  PubMed  Google Scholar 

  17. Biasibetti M, Rojas DB, Hentschke VS, Moura DJ, Karsten M, Wannmacher CM, Saffi J, Dal Lago P (2014) The influence of low-level laser therapy on parameters of oxidative stress and DNA damage on muscle and plasma in rats with heart failure. Lasers Med Sci 29(6):1895–1906. doi:10.1007/s10103-014-1597-1

    Article  PubMed  Google Scholar 

  18. Alves JP, Nunes RB, Stefani GP, Dal Lago P (2014) Resistance training improves hemodynamic function, collagen deposition and inflammatory profiles: experimental model of heart failure. PLoS One 9(10):e110317. doi:10.1371/journal.pone.0110317

    Article  PubMed  PubMed Central  Google Scholar 

  19. Musch TI, Wolfram S, Hageman KS, Pickar JG (2002) Skeletal muscle ouabain binding sites are reduced in rats with chronic heart failure. J Appl Physiol (1985) 92(6):2326–2334. doi:10.1152/japplphysiol.00686.2001

    Article  CAS  Google Scholar 

  20. Pfeifer PC, Musch TI, McAllister RM (2001) Skeletal muscle oxidative capacity and exercise tolerance in rats with heart failure. Med Sci Sports Exerc 33(4):542–548

    Article  CAS  PubMed  Google Scholar 

  21. Krisan AD, Collins DE, Crain AM, Kwong CC, Singh MK, Bernard JR, Yaspelkis BB 3rd (2004) Resistance training enhances components of the insulin signaling cascade in normal and high-fat-fed rodent skeletal muscle. J Appl Physiol (1985) 96(5):1691–1700. doi:10.1152/japplphysiol.01054.2003

    Article  CAS  Google Scholar 

  22. Barauna VG, Magalhaes FC, Krieger JE, Oliveira EM (2008) AT1 receptor participates in the cardiac hypertrophy induced by resistance training in rats. Am J Physiol Regul Integr Comp Physiol 295(2):R381–R387. doi:10.1152/ajpregu.00933.2007

    Article  CAS  PubMed  Google Scholar 

  23. Tamaki T, Uchiyama S, Nakano S (1992) A weight-lifting exercise model for inducing hypertrophy in the hindlimb muscles of rats. Med Sci Sports Exerc 24(8):881–886

    Article  CAS  PubMed  Google Scholar 

  24. Garber CE, Blissmer B, Deschenes MR, Franklin BA, Lamonte MJ, Lee IM, Nieman DC, Swain DP, American College of Sports M (2011) American College of Sports Medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise. Med Sci Sports Exerc 43(7):1334–1359. doi:10.1249/MSS.0b013e318213fefb

    Article  PubMed  Google Scholar 

  25. Campos JC, Queliconi BB, Dourado PM, Cunha TF, Zambelli VO, Bechara LR, Kowaltowski AJ, Brum PC, Mochly-Rosen D, Ferreira JC (2012) Exercise training restores cardiac protein quality control in heart failure. PLoS One 7(12), e52764. doi:10.1371/journal.pone.0052764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Louzada RA, Oliveira PF, Cavalcanti-de-Albuquerque JP, Cunha-Carvalho L, Baldanza MR, Kasai-Brunswick TH, Goldenberg RC, Campos-de-Carvalho AC, Werneck-de-Castro JP (2010) Granulocyte-colony stimulating factor treatment of chronic myocardial infarction. Cardiovasc Drugs Ther 24(2):121–130. doi:10.1007/s10557-010-6215-2

    Article  CAS  PubMed  Google Scholar 

  27. Rondon E, Brasileiro-Santos MS, Moreira ED, Rondon MU, Mattos KC, Coelho MA, Silva GJ, Brum PC, Fiorino P, Irigoyen MC, Krieger EM, Middlekauff HR, Negrao CE (2006) Exercise training improves aortic depressor nerve sensitivity in rats with ischemia-induced heart failure. Am J Physiol Heart Circ Physiol 291(6):H2801–H2806. doi:10.1152/ajpheart.01352.2005

    Article  CAS  PubMed  Google Scholar 

  28. Werneck-de-Castro JP, Costa ESRH, de Oliveira PF, Pinho-Ribeiro V, Mello DB, Pecanha R, Mattos E, Olivares EL, Maia AC, Mill JG, Dos Santos Goldenberg RC, Campos-de-Carvalho AC (2006) G-CSF does not improve systolic function in a rat model of acute myocardial infarction. Basic Res Cardiol 101(6):494–501. doi:10.1007/s00395-006-0605-4

    Article  CAS  PubMed  Google Scholar 

  29. Batista ML Jr, Santos RV, Oliveira EM, Seelaender MC, Costa Rosa LF (2007) Endurance training restores peritoneal macrophage function in post-MI congestive heart failure rats. J Appl Physiol (1985) 102(5):2033–2039. doi:10.1152/japplphysiol.00871.2006

    Article  CAS  Google Scholar 

  30. Lang RM, Bierig M, Devereux RB, Flachskampf FA, Foster E, Pellikka PA, Picard MH, Roman MJ, Seward J, Shanewise JS, Solomon SD, Spencer KT, Sutton MS, Stewart WJ, Chamber Quantification Writing G, American Society of Echocardiography’s G, Standards C, European Association of E (2005) Recommendations for chamber quantification: a report from the American Society of Echocardiography’s Guidelines and Standards Committee and the Chamber Quantification Writing Group, developed in conjunction with the European Association of Echocardiography, a branch of the European Society of Cardiology. J Am Soc Echocardiogr 18(12):1440–1463. doi:10.1016/j.echo.2005.10.005

    Article  PubMed  Google Scholar 

  31. Barauna VG, Rosa KT, Irigoyen MC, de Oliveira EM (2007) Effects of resistance training on ventricular function and hypertrophy in a rat model. Clin Med Res 5(2):114–120. doi:10.3121/cmr.2007.707

    Article  PubMed  PubMed Central  Google Scholar 

  32. Martinez PF, Okoshi K, Zornoff LA, Oliveira SA Jr, Campos DH, Lima AR, Damatto RL, Cezar MD, Bonomo C, Guizoni DM, Padovani CR, Cicogna AC, Okoshi MP (2011) Echocardiographic detection of congestive heart failure in postinfarction rats. J Appl Physiol (1985) 111(2):543–551. doi:10.1152/japplphysiol.01154.2010

    Article  Google Scholar 

  33. Moreira JB, Bechara LR, Bozi LH, Jannig PR, Monteiro AW, Dourado PM, Wisloff U, Brum PC (2013) High- versus moderate-intensity aerobic exercise training effects on skeletal muscle of infarcted rats. J Appl Physiol (1985) 114(8):1029–1041. doi:10.1152/japplphysiol.00760.2012

    Article  CAS  Google Scholar 

  34. Schenkel PC, Tavares AM, Fernandes RO, Diniz GP, Bertagnolli M, da Rosa Araujo AS, Barreto-Chaves ML, Ribeiro MF, Clausell N, Bello-Klein A (2010) Redox-sensitive prosurvival and proapoptotic protein expression in the myocardial remodeling post-infarction in rats. Mol Cell Biochem 341(1–2):1–8. doi:10.1007/s11010-010-0431-8

    Article  CAS  PubMed  Google Scholar 

  35. Tavares AM, da Rosa Araujo AS, Baldo G, Matte U, Khaper N, Bello-Klein A, Rohde LE, Clausell N (2010) Bone marrow derived cells decrease inflammation but not oxidative stress in an experimental model of acute myocardial infarction. Life Sci 87(23–26):699–706. doi:10.1016/j.lfs.2010.10.008

    Article  CAS  PubMed  Google Scholar 

  36. Brown L, Fenning A, Chan V, Loch D, Wilson K, Anderson B, Burstow D (2002) Echocardiographic assessment of cardiac structure and function in rats. Heart Lung Circ 11(3):167–173. doi:10.1046/j.1444-2892.2002.00148.x

    Article  PubMed  Google Scholar 

  37. Reffelmann T, Kloner RA (2003) Transthoracic echocardiography in rats. Evalution of commonly used indices of left ventricular dimensions, contractile performance, and hypertrophy in a genetic model of hypertrophic heart failure (SHHF-Mcc-facp-Rats) in comparison with Wistar rats during aging. Basic Res Cardiol 98(5):275–284. doi:10.1007/s00395-003-0401-3

    Article  PubMed  Google Scholar 

  38. Miranda EF, Leal-Junior EC, Marchetti PH, Dal Corso S (2013) Effects of light-emitting diodes on muscle fatigue and exercise tolerance in patients with COPD: study protocol for a randomized controlled trial. Trials 14:134. doi:10.1186/1745-6215-14-134

    Article  PubMed  PubMed Central  Google Scholar 

  39. Albuquerque-Pontes GM, Vieira RP, Tomazoni SS, Caires CO, Nemeth V, Vanin AA, Santos LA, Pinto HD, Marcos RL, Bjordal JM, de Carvalho PT, Leal-Junior EC (2015) Effect of pre-irradiation with different doses, wavelengths, and application intervals of low-level laser therapy on cytochrome c oxidase activity in intact skeletal muscle of rats. Lasers Med Sci 30(1):59–66. doi:10.1007/s10103-014-1616-2

    Article  PubMed  Google Scholar 

  40. Nozawa E, Kanashiro RM, Murad N, Carvalho AC, Cravo SL, Campos O, Tucci PJ, Moises VA (2006) Performance of two-dimensional Doppler echocardiography for the assessment of infarct size and left ventricular function in rats. Braz J Med Biol Res 39(5):687–695

    Article  CAS  PubMed  Google Scholar 

  41. Oh BH, Ono S, Rockman HA, Ross J Jr (1993) Myocardial hypertrophy in the ischemic zone induced by exercise in rats after coronary reperfusion. Circulation 87(2):598–607

    Article  CAS  PubMed  Google Scholar 

  42. Perini JL, Hentschke VS, Sonza A, Dal Lago P (2016) Long-term low-level laser therapy promotes an increase in maximal oxygen uptake and exercise performance in a dose-dependent manner in Wistar rats. Lasers Med Sci 31(2):241–248. doi:10.1007/s10103-015-1849-8

    Article  PubMed  Google Scholar 

  43. Capalonga L, Karsten M, Hentschke VS, Rossato DD, Dornelles MP, Sonza A, Bagnato VS, Ferraresi C, Parizotto NA, Dal Lago P (2016) Light-emitting diode therapy (LEDT) improves functional capacity in rats with heart failure. Lasers Med Sci. doi:10.1007/s10103-016-1922-y

    Google Scholar 

  44. da Silva Alves MA, Pinfildi CE, Neto LN, Lourenco RP, de Azevedo PH, Dourado VZ (2014) Acute effects of low-level laser therapy on physiologic and electromyographic responses to the cardiopulmonary exercise testing in healthy untrained adults. Lasers Med Sci 29(6):1945–1951. doi:10.1007/s10103-014-1595-3

    Article  PubMed  Google Scholar 

  45. Miranda EF, Vanin AA, Tomazoni SS, Grandinetti Vdos S, de Paiva PR, Machado Cdos S, Monteiro KK, Casalechi HL, de Tarso P, de Carvalho C, Leal-Junior EC (2016) Using pre-exercise photobiomodulation therapy combining super-pulsed lasers and light-emitting diodes to improve performance in progressive cardiopulmonary exercise tests. J Athl Train 51(2):129–135. doi:10.4085/1062-6050-51.3.10

    Article  PubMed  Google Scholar 

  46. Miranda EF, de Oliveira LV, Antonialli FC, Vanin AA, de Carvalho PT, Leal-Junior EC (2015) Phototherapy with combination of super-pulsed laser and light-emitting diodes is beneficial in improvement of muscular performance (strength and muscular endurance), dyspnea, and fatigue sensation in patients with chronic obstructive pulmonary disease. Lasers Med Sci 30(1):437–443. doi:10.1007/s10103-014-1690-5

    Article  PubMed  Google Scholar 

  47. Leal-Junior EC, de Almeida P, Tomazoni SS, de Carvalho PT, Lopes-Martins RA, Frigo L, Joensen J, Johnson MI, Bjordal JM (2014) Superpulsed low-level laser therapy protects skeletal muscle of mdx mice against damage, inflammation and morphological changes delaying dystrophy progression. PLoS One 9(3), e89453. doi:10.1371/journal.pone.0089453

    Article  PubMed  PubMed Central  Google Scholar 

  48. Cicoira M, Bolger AP, Doehner W, Rauchhaus M, Davos C, Sharma R, Al-Nasser FO, Coats AJ, Anker SD (2001) High tumour necrosis factor-alpha levels are associated with exercise intolerance and neurohormonal activation in chronic heart failure patients. Cytokine 15(2):80–86. doi:10.1006/cyto.2001.0918

    Article  CAS  PubMed  Google Scholar 

  49. Coirault C, Guellich A, Barbry T, Samuel JL, Riou B, Lecarpentier Y (2007) Oxidative stress of myosin contributes to skeletal muscle dysfunction in rats with chronic heart failure. Am J Physiol Heart Circ Physiol 292(2):H1009–H1017. doi:10.1152/ajpheart.00438.2006

    Article  CAS  PubMed  Google Scholar 

  50. Borsa PA, Larkin KA, True JM (2013) Does phototherapy enhance skeletal muscle contractile function and postexercise recovery? A systematic review. J Athl Train 48(1):57–67. doi:10.4085/1062-6050-48.1.12

    PubMed  PubMed Central  Google Scholar 

  51. Leal-Junior EC (2015) Photobiomodulation therapy in skeletal muscle: from exercise performance to muscular dystrophies. Photomed Laser Surg 33(2):53–54. doi:10.1089/pho.2015.9851

    Article  PubMed  PubMed Central  Google Scholar 

  52. Baroni BM, Leal Junior EC, De Marchi T, Lopes AL, Salvador M, Vaz MA (2010) Low level laser therapy before eccentric exercise reduces muscle damage markers in humans. Eur J Appl Physiol 110(4):789–796. doi:10.1007/s00421-010-1562-z

    Article  PubMed  Google Scholar 

  53. Ferraresi C, de Brito OT, de Oliveira ZL, de Menezes Reiff RB, Baldissera V, de Andrade Perez SE, Matheucci Junior E, Parizotto NA (2011) Effects of low level laser therapy (808 nm) on physical strength training in humans. Lasers Med Sci 26(3):349–358. doi:10.1007/s10103-010-0855-0

    Article  PubMed  Google Scholar 

  54. Ferraresi C, Parizotto NA, Pires de Sousa MV, Kaippert B, Huang YY, Koiso T, Bagnato VS, Hamblin MR (2015) Light-emitting diode therapy in exercise-trained mice increases muscle performance, cytochrome c oxidase activity, ATP and cell proliferation. J Biophotonics 8(9):740–754. doi:10.1002/jbio.201400087

    Article  CAS  PubMed  Google Scholar 

  55. Vieira WH, Ferraresi C, Perez SE, Baldissera V, Parizotto NA (2012) Effects of low-level laser therapy (808 nm) on isokinetic muscle performance of young women submitted to endurance training: a randomized controlled clinical trial. Lasers Med Sci 27(2):497–504. doi:10.1007/s10103-011-0984-0

    Article  PubMed  Google Scholar 

  56. Vanin AA, Miranda EF, Machado CS, de Paiva PR, Albuquerque-Pontes GM, Casalechi HL, de Tarso Camillo de Carvalho P, Leal-Junior EC (2016) What is the best moment to apply phototherapy when associated to a strength training program? A randomized, double-blinded, placebo-controlled trial: phototherapy in association to strength training. Lasers Med Sci. doi:10.1007/s10103-016-2015-7

    Google Scholar 

  57. Rolim NP, Mattos KC, Brum PC, Baldo MV, Middlekauff HR, Negrao CE (2006) The decreased oxygen uptake during progressive exercise in ischemia-induced heart failure is due to reduced cardiac output rate. Braz J Med Biol Res 39(2):297–304

    Article  CAS  PubMed  Google Scholar 

  58. Fletcher PJ, Pfeffer JM, Pfeffer MA, Braunwald E (1981) Left ventricular diastolic pressure-volume relations in rats with healed myocardial infarction. Effects on systolic function. Circ Res 49(3):618–626

    Article  CAS  PubMed  Google Scholar 

  59. Feiereisen P, Delagardelle C, Vaillant M, Lasar Y, Beissel J (2007) Is strength training the more efficient training modality in chronic heart failure? Med Sci Sports Exerc 39(11):1910–1917. doi:10.1249/mss.0b013e31814fb545

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We are thankful to Prof. Edson Quagliotto, Prof. Ramiro Barcos Nunes and Ignês Cristiane de Souza Paiva for their support during the development of this study. This work was supported by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Brazil, Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Brazil, and Fundação de Amparo a Pesquisa do Estado do Rio Grande do Sul (FAPERGS), Brazil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro Dal Lago.

Ethics declarations

Funding

This study was supported by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq).

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hentschke, V.S., Capalonga, L., Rossato, D.D. et al. Maximal oxygen uptake and exercise tolerance are improved in rats with heart failure subjected to low-level laser therapy associated with resistance training. Lasers Med Sci 32, 73–85 (2017). https://doi.org/10.1007/s10103-016-2088-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-016-2088-3

Keywords

Navigation