Skip to main content
Log in

Long-term low-level laser therapy promotes an increase in maximal oxygen uptake and exercise performance in a dose-dependent manner in Wistar rats

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

The use of low-level laser therapy (LLLT) represents a new intervention modality that has been explored to enhance exercise performance. The aim of this study was to evaluate the influence of LLLT (GaAIAs—850 nm) at different doses on VO2max and on exercise performance in rats. Male Wistar rats were divided into three groups: “placebo” rats (P-LLLT, n = 10), rats at a dose of 0.315 J per treatment point of LLLT (8.7 J/cm2-LLLT, n = 10), and rats at a dose of 2.205 J per treatment point of LLLT (61.2 J/cm2-LLLT, n = 10). The LLLT was applied bilaterally at the biceps femoris, gluteus, lateral and medial gastrocnemius, iliopsoas, and adductor longus muscles. One spot in each muscle belly was applied, with a sum of 12 spots in each rat, once a day, for 10 days. All animals performed the maximal exercise test (ET) at a metabolic treadmill for rats, with simultaneous gas analysis. The distance covered was measured during ET, before and after the conclusion of the LLLT protocol. The data were compared by a repeated measures two-way ANOVA followed by the Student-Newman-Keuls post hoc tests (p < .05). The 61.2 J/cm2-LLLT group increased VO2basal (~40 %), VO2max (~24 %), VCO2max (~17 %), and distance covered (~34 %) after LLLT application on the skeletal muscle. No significant results were found comparing before and after conditions for the studied variables considering P-LLLT and 8.7 J/cm2-LLLT groups. The LLLT promoted in a dose-dependent manner an increase in oxygen consumption uptake and a performance increment of male Wistar rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Chung H, Dai T, Sharma SK, Huang YY, Carroll JD, Hamblin MR (2012) The nuts and bolts of low-level laser (light) therapy. Ann Biomed Eng 40(2):516–533

    Article  PubMed Central  PubMed  Google Scholar 

  2. Hurkmans EJ, Jones A, Li LC, Vliet Vlieland TP (2011) Quality appraisal of clinical practice guidelines on the use of physiotherapy in rheumatoid arthritis: a systematic review. Rheumatology (Oxford, England) 50(10):1879–1888

    Article  Google Scholar 

  3. Kingsley JD, Demchak T, Mathis R (2014) Low-level laser therapy as a treatment for chronic pain. Front Physiol 5:306

    Article  PubMed Central  PubMed  Google Scholar 

  4. Nesioonpour S, Mokmeli S, Vojdani S et al (2014) The effect of low-level laser on postoperative pain after tibial fracture surgery: a double-blind controlled randomized clinical trial. Anesth Pain Med 4(3), e17350

    Article  PubMed Central  PubMed  Google Scholar 

  5. Beckmann KH, Meyer-Hamme G, Schroder S (2014) Low level laser therapy for the treatment of diabetic foot ulcers: a critical survey. Evid Based Complement Alternat Med 2014:626127

    Article  PubMed Central  PubMed  Google Scholar 

  6. Aggarwal H, Singh MP, Nahar P, Mathur H, Gv S (2014) Efficacy of low-level laser therapy in treatment of recurrent aphthous ulcers—a sham controlled, split mouth follow up study. J Clin Diagn Res 8(2):218–221

    PubMed Central  PubMed  Google Scholar 

  7. Liu BS, Huang TB, Chan SC (2014) Roles of reinforced nerve conduits and low-level laser phototherapy for long gap peripheral nerve repair. Neural Regen Res 9(12):1180–1182

    Article  PubMed Central  PubMed  Google Scholar 

  8. Hentschke VS, Jaenisch RB, Schmeing LA, Cavinato PR, Xavier LL, Dal Lago P (2013) Low-level laser therapy improves the inflammatory profile of rats with heart failure. Lasers Med Sci 28(3):1007–1016

    Article  PubMed  Google Scholar 

  9. Biasibetti M, Rojas DB, Hentschke VS et al (2014) The influence of low-level laser therapy on parameters of oxidative stress and DNA damage on muscle and plasma in rats with heart failure. Lasers Med Sci 29(6):1895–1906

    Article  PubMed  Google Scholar 

  10. Huang YY, Chen AC, Carroll JD, Hamblin MR (2009) Biphasic dose response in low level light therapy. Dose-Response: a publication of International Hormesis Society 7(4):358–383

    Article  Google Scholar 

  11. Ferraresi C, de Brito OT, de Oliveira ZL et al (2011) Effects of low level laser therapy (808 nm) on physical strength training in humans. Lasers Med Sci 26(3):349–358

    Article  PubMed  Google Scholar 

  12. Leal-Junior EC, Vanin AA, Miranda EF, de Carvalho PT, Dal Corso S, Bjordal JM (2015) Effect of phototherapy (low-level laser therapy and light-emitting diode therapy) on exercise performance and markers of exercise recovery: a systematic review with meta-analysis. Lasers Med Sci 30(2):925–39

    Article  PubMed  Google Scholar 

  13. Leal Junior EC, Lopes-Martins RA, Baroni BM et al (2009) Effect of 830 nm low-level laser therapy applied before high-intensity exercises on skeletal muscle recovery in athletes. Lasers Med Sci 24(6):857–863

    Article  PubMed  Google Scholar 

  14. Leal Junior EC, Lopes-Martins RA, Frigo L et al (2010) Effects of low-level laser therapy (LLLT) in the development of exercise-induced skeletal muscle fatigue and changes in biochemical markers related to postexercise recovery. J Orthop Sports Phys Ther 40(8):524–532

    Article  PubMed  Google Scholar 

  15. Leal Junior EC, Lopes-Martins RA, de Almeida P, Ramos L, Iversen VV, Bjordal JM (2010) Effect of low-level laser therapy (GaAs 904 nm) in skeletal muscle fatigue and biochemical markers of muscle damage in rats. Eur J Appl Physiol 108(6):1083–1088

    Article  PubMed  Google Scholar 

  16. De Marchi T, Leal Junior EC, Bortoli C, Tomazoni SS, Lopes-Martins RA, Salvador M (2012) Low-level laser therapy (LLLT) in human progressive-intensity running: effects on exercise performance, skeletal muscle status, and oxidative stress. Lasers Med Sci 27(1):231–236

    Article  PubMed  Google Scholar 

  17. Amadio EM, Serra AJ, Guaraldo SA et al (2015) The action of pre-exercise low-level laser therapy (LLLT) on the expression of IL-6 and TNF-alpha proteins and on the functional fitness of elderly rats subjected to aerobic training. Lasers Med Sci 30(3):1127–1134

    Article  PubMed  Google Scholar 

  18. Batista ML Jr, Santos RV, Oliveira EM, Seelaender MC, Costa Rosa LF (2007) Endurance training restores peritoneal macrophage function in post-MI congestive heart failure rats. J Appl Physiol (1985) 102(5):2033–2039

    Article  CAS  Google Scholar 

  19. Rodrigues B, Figueroa DM, Mostarda CT, Heeren MV, Irigoyen MC, De Angelis K (2007) Maximal exercise test is a useful method for physical capacity and oxygen consumption determination in streptozotocin-diabetic rats. Cardiovasc Diabetol 6:38

    Article  PubMed Central  PubMed  Google Scholar 

  20. Rodrigues B, Mostarda CT, Jorge L et al (2013) Impact of myocardial infarction on cardiac autonomic function in diabetic rats. J Diabetes Complicat 27(1):16–22

    Article  PubMed  Google Scholar 

  21. Rodrigues B, Jorge L, Mostarda CT et al (2012) Aerobic exercise training delays cardiac dysfunction and improves autonomic control of circulation in diabetic rats undergoing myocardial infarction. J Card Fail 18(9):734–744

    Article  PubMed  Google Scholar 

  22. Campos JC, Queliconi BB, Dourado PM et al (2012) Exercise training restores cardiac protein quality control in heart failure. PloS one 7(12), e52764

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Louzada RA, Oliveira PF, Cavalcanti-de-Albuquerque JP et al (2010) Granulocyte-colony stimulating factor treatment of chronic myocardial infarction. Cardiovasc Drugs Ther 24(2):121–130

    Article  CAS  PubMed  Google Scholar 

  24. Lima JW, Hentschke VS, Rossato DD, Quagliotto E, Pinheiro L, Almeida Jr E, Dal Lago P, Lukrafka JL. Chronic electroacupuncture of the ST36 point improves baroreflex function and haemodynamic parameters in heart failure rats. Autonomic Neuroscience. May 2015; In Press.

  25. Santos LA, Marcos RL, Tomazoni SS et al (2014) Effects of pre-irradiation of low-level laser therapy with different doses and wavelengths in skeletal muscle performance, fatigue, and skeletal muscle damage induced by tetanic contractions in rats. Lasers Med Sci 29(5):1617–1626

    Article  PubMed  Google Scholar 

  26. Antonialli FC, De Marchi T, Tomazoni SS et al (2014) Phototherapy in skeletal muscle performance and recovery after exercise: effect of combination of super-pulsed laser and light-emitting diodes. Lasers Med Sci 29(6):1967–1976

    Article  PubMed  Google Scholar 

  27. Baroni BM, Rodrigues R, Freire BB, Franke Rde A, Geremia JM, Vaz MA (2015) Effect of low-level laser therapy on muscle adaptation to knee extensor eccentric training. Eur J Appl Physiol 115(3):639–647

    Article  CAS  PubMed  Google Scholar 

  28. Albertini R, Aimbire FS, Correa FI et al (2004) Effects of different protocol doses of low power gallium-aluminum-arsenate (Ga-Al-As) laser radiation (650 nm) on carrageenan induced rat paw ooedema. J Photochem Photobiol B 74(2–3):101–107

    Article  CAS  PubMed  Google Scholar 

  29. Boschi ES, Leite CE, Saciura VC et al (2008) Anti-Inflammatory effects of low-level laser therapy (660 nm) in the early phase in carrageenan-induced pleurisy in rat. Lasers Surg Med 40(7):500–508

    Article  PubMed  Google Scholar 

  30. Albertini R, Villaverde AB, Aimbire F et al (2007) Anti-inflammatory effects of low-level laser therapy (LLLT) with two different red wavelengths (660 nm and 684 nm) in carrageenan-induced rat paw edema. J Photochem Photobiol B 89(1):50–55

    Article  CAS  PubMed  Google Scholar 

  31. Buravlev EA, Zhidkova TV, Vladimirov YA, Osipov AN (2013) Effects of laser and LED radiation on mitochondrial respiration in experimental endotoxic shock. Lasers Med Sci 28(3):785–790

    Article  CAS  PubMed  Google Scholar 

  32. Wong-Riley MT, Liang HL, Eells JT et al (2005) Photobiomodulation directly benefits primary neurons functionally inactivated by toxins: role of cytochrome c oxidase. J Biol Chem 280(6):4761–4771

    Article  CAS  PubMed  Google Scholar 

  33. Hayworth CR, Rojas JC, Padilla E, Holmes GM, Sheridan EC, Gonzalez-Lima F (2010) In vivo low-level light therapy increases cytochrome oxidase in skeletal muscle. Photochem Photobiol 86(3):673–680

    Article  CAS  PubMed  Google Scholar 

  34. Albuquerque-Pontes GM, Vieira Rde P, Tomazoni SS et al (2015) Effect of pre-irradiation with different doses, wavelengths, and application intervals of low-level laser therapy on cytochrome c oxidase activity in intact skeletal muscle of rats. Lasers Med Sci 30(1):59–66

    Article  PubMed  Google Scholar 

  35. Myers J, Gullestad L, Vagelos R et al (2000) Cardiopulmonary exercise testing and prognosis in severe heart failure: 14 mL/kg/min revisited. Am Heart J 139(1 Pt 1):78–84

    Article  CAS  PubMed  Google Scholar 

  36. Yancy CW, Jessup M, Bozkurt B et al (2013) 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol 62(16):e147–239

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Giuseppe Potrick Stefani, Jadson Pereira Alves, and Jéssica Willing Lima for their technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro Dal Lago.

Ethics declarations

The animals were cared for in accordance with the Arouca Brazilian Law (11794/2008) supported by the Decree number 6.899 of 15 July 2009, which defines the composition of the National Council for the Control of Animal Experimentation, as well the International Guiding Principles for Biomedical Research Involving Animals developed by the Council for International Organization of Medical Sciences (CIOMS). Moreover, the study methods were in compliance with the Ethics and Research Committee on Animal Use of UFCSPA (protocol 140/13).

Financial support

This study was supported by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), and by the Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS), Brazil.

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perini, J.L., Scotta Hentschke, V., Sonza, A. et al. Long-term low-level laser therapy promotes an increase in maximal oxygen uptake and exercise performance in a dose-dependent manner in Wistar rats. Lasers Med Sci 31, 241–248 (2016). https://doi.org/10.1007/s10103-015-1849-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-015-1849-8

Keywords

Navigation