Skip to main content

Advertisement

Log in

In vitro studies of the antiherpetic effect of photodynamic therapy

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

The number of viral infection cases in the Department of Gynecology and Obstetrics has tended to increase over last few years. Viruses form herpesvirus and cytomegalovirus families are associated with an increased risk for recurrent pregnancy loss. Photodynamic therapy (PDT) is a promising new approach to treat viral infections in which viral particles are inactivated. It exhibits great therapeutic potential, particularly among this group of patients. This study examined the use of PDT to treat herpesvirus infection (HVI) using an in vitro model. In this study, we used the Vero сell lineage as a suitable model of HVI, strains of HSV-1 (strain VR-3) and HSV-2 (strain MS) obtained from The National Virus Collection (London, UK), the photosensitizer Fotoditazine (Veta-Grand, Russia), an AFS physiotherapeutic device (Polironic Corporation, Russia). Laser light irradiation and the photosensitizer had different cytotoxic effects on the Vero cell cultures depending on the doses used. The optimal laser light and photosensitizer doses were determined. PDT had an antiviral effect on an in vitro model of HVI in cell culture. PDT has been shown to be effective treatment for HVI in vitro, leading to a reliable decrease of viral titer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kim ID, Chang HS, Hwang KJ (2012) Herpes simplex virus 2 infection rate and necessity of screening during pregnancy: a clinical and seroepidemiologic study. Yonsei Med J 53(2):401–407. doi:10.3349/ymj.2012.53.2.401

    Article  PubMed  PubMed Central  Google Scholar 

  2. Arenas Y, Monro S, Shi G, Mandel A, McFarland S, Lilge L (2013) Photodynamic inactivation of Staphylococcus aureus and methicillin-resistant Staphylococcus aureus with Ru(II)-based type I/type II photosensitizers. Photodiagn Photodyn Ther 10(4):615–625. doi:10.1016/j.pdpdt.2013.07.001

    Article  CAS  Google Scholar 

  3. Nafee N, Youssef A, El-Gowelli H, Asem H, Kandil S (2013) Antibiotic-free nanotherapeutics: hypericin nanoparticles thereof for improved in vitro and in vivo antimicrobial photodynamic therapy and wound healing. Int J Pharm 454(1):249–258. doi:10.1016/j.ijpharm.2013.06.067

    Article  CAS  PubMed  Google Scholar 

  4. Wilson SS, Fakioglu E, Herold BC (2009) Novel approaches in fighting herpes simplex virus infections. Expert Rev Anti-Infect Ther 7(5):559–568. doi:10.1586/eri.09.34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kovalchuk LV, Gankovskaya LV, Gankovskaya OA, Lavrov VF (2007) Herpes simplex virus: treatment with antimicrobial peptides. Adv Exp Med Biol 601:369–376

    Article  PubMed  Google Scholar 

  6. Gankovskaia OA, Koval’chuk LV, Gankovskaia LV, Lavrov VF, Romanovskaia VV, Kartashov DD, Fenzeleva VA (2008) Role of Toll-like receptors and defensins in antimicrobial protection of urogenital tract in females. Zh Mikrobiol Epidemiol Immunobiol 1:46–50

    PubMed  Google Scholar 

  7. Juarranz A, Jaen P, Sanz-Rodriguez F, Cuevas J, Gonzalez S (2008) Photodynamic therapy of cancer. Basic principles and applications. Clin Transl Oncol 10(3):148–154

    Article  CAS  PubMed  Google Scholar 

  8. Shurshalina AV, Veryasov VN, Sukhikh GT (2001) The ratio of cytokine levels in genital herpes during various phases of infection. Bull Exp Biol Med 132(1):660–662

    Article  CAS  PubMed  Google Scholar 

  9. Anzivino E, Fioriti D, Mischietelli M et al (2009) Herpes simplex virus infection in pregnancy and in neonate: status of art of epidemiology, diagnosis, therapy and prevention. Virol J 6:40

    Article  PubMed  PubMed Central  Google Scholar 

  10. Gardiner DW, Lunn DP, Goehring LS, Chiang YW, Cook C, Osterrieder N, McCue P, Del Piero F, Hussey SB, Hussey GS (2012) Strain impact on equine herpesvirus type 1 (EHV-1) abortion models: viral loads in fetal and placental tissues and foals. Vaccine 30(46):6564–6572. doi:10.1016/j.vaccine.2012.08.046

    Article  PubMed  Google Scholar 

  11. Gankovskaia OA, Bakhareva IV, Gankovskaia LV, Somova OI, Zverev VV (2009) Study of expression of TLR9, NF-kappaB, TNFalpha genes in cells of cervical canal mucosa in pregnant women with herpesvirus infection. Zh Mikrobiol Epidemiol Immunobiol 2:61–64

    PubMed  Google Scholar 

  12. Matthews YJ, Damian DL (2010) Topical photodynamic therapy is immunosuppressive in humans. Br J \Dermatol 162:637–641. doi:10.1111/j.1365-2133.2009.09562.x

    Article  CAS  PubMed  Google Scholar 

  13. Kasermann F, Kempf C (1998) Buckministerfullerene and photodynamic inactivation of viruses. Rev Med Virol 8:143–151

    Article  CAS  PubMed  Google Scholar 

  14. Tan DH, Murphy K, Shah P, Walmsley SL (2013) Herpes simplex virus type 2 and HIV disease progression: a systematic review of observational studies. BMC Infect Dis 13(1):502

    Article  PubMed  PubMed Central  Google Scholar 

  15. Jones СA (2009) Vertical transmission of genital herpes. prevention and treatment options. Drugs 69(4):421–434. doi:10.2165/00003495-200969040-00003

    Article  CAS  PubMed  Google Scholar 

  16. Vibholm L, Reinert LS, Sogaard OS et al (2012) Antiviral and immunological effects of tenofovir microbicide in vaginal herpes simplex virus 2 infection. AIDS Res Hum Retrovir 28(11):1–8. doi:10.1089/AID.2012.0078

    Article  Google Scholar 

  17. Moor AC, Wagenaars-van-Gompel AE, Brand A, Dubbelman MA, VanSteveninck J (1997) Primary targets for fotoinactivation of vesicular stomatitis virus by AIPcS4 or Pc4 and red light. J Photochem Photobiol 65(3):465–470

    Article  CAS  Google Scholar 

  18. Malik Z, Hanania J, Nitzan Y (1990) Bacterial effect of photoactivated porphyrins—an alternative approach to antimicrobal drugs. J Photochem Photobiol B Biology 5:281–293

    Article  CAS  PubMed  Google Scholar 

  19. Yang YG, Zou XB, Zhao H, Zhang YJ, Li HJ (2012) Photodynamic therapy of condyloma acuminata in pregnant women. Chin Med J 125(16):2925–2928

    PubMed  Google Scholar 

  20. Calvino-Fernández M, García-Fresnadillo D, Benito-Martínez S, McNicholl AG, Calvet X, Gisbert JP, Parra-Cid T (2013) Helicobacter pylori inactivation and virulence gene damage using a supported sensitiser for photodynamic therapy. Eur J Med Chem 68:284–290. doi:10.1016/j.ejmech.2013.07.023

    Article  PubMed  Google Scholar 

  21. Kashiwabuchi RT, Khan Y, Carvalho FR, Hirai F, Campos MS, McDonnell PJ (2012) Antimicrobial susceptibility of photodynamic therapy (UVA/riboflavin) against Staphylococcus aureus. Arq Bras Oftalmol 75(6):423–426

    Article  PubMed  Google Scholar 

  22. Yin H, Li Y, Zheng Y, Ye X, Zheng L, Li C, Xue Z, Yin H, Li Y, Zheng Y, Ye X, Zheng L, Li C, Xue Z (2012) Photoinactivation of cell-free human immunodeficiency virus by hematoporphyrin monomethyl ether. Lasers Med Sci 27(5):943–950. doi:10.1007/s10103-011-1013-z

    Article  PubMed  Google Scholar 

  23. Xu J, Xiang L, Chen J, He Q, Li Q, Li J, Wang J (2013) The combination treatment using CO2 laser and photodynamic therapy for HIV seropositive men with intraanal warts. Photodiagn Photodyn Ther 10(2):186–193. doi:10.1016/j.pdpdt.2012.11.005

    Article  Google Scholar 

  24. Abe H, Yamada-Ohnishi Y, Hirayama J, Owada T, Ikeda H, Ikebuchi K (2000) Elimination of both cell-free and cell-associated HIV infectivity in plasma by a filtration/methylene blue photoinactivation system. Transfusion 40(9):1081–1087

    Article  CAS  PubMed  Google Scholar 

  25. Kelly BJ, Bauerfeind R, Binz A, Sodeik B, Laimbacher AS, Fraefel C, Diefenbach RJ (2014) The interaction of the HSV-1 tegument proteins pUL36 and pUL37 is essential for secondary envelopment during viral egress. Virology 454–455:67–77

    Article  PubMed  Google Scholar 

  26. Sauter MM, Gauger JJ, Brandt CR (2014) Oligonucleotides designed to inhibit TLR9 block Herpes simplex virus type 1 infection at multiple steps. Antiviral Res 109C:83–96. doi:10.1016/j.antiviral.2014.06.015

    Article  Google Scholar 

  27. Glants S. Medical and biological statistics. M.: Praktika, 1998; P. 459.

  28. Bajgar R, Kolarova H, Bolek L, Binder S, Pizova K, Hanakova A (2014) High oxygen partial pressure increases photodynamic effect on HeLa cell lines in the presence of chloraluminium phthalocyanine. Anticancer Res 34(8):4095–4099

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Markova.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zverev, V.V., Makarov, O.V., Khashukoeva, A.Z. et al. In vitro studies of the antiherpetic effect of photodynamic therapy. Lasers Med Sci 31, 849–855 (2016). https://doi.org/10.1007/s10103-016-1912-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-016-1912-0

Keywords

Navigation