Skip to main content

Advertisement

Log in

Could the bone mineral density (T-score) be correlated with the Raman spectral features of keratin from women’s nails and be used to predict osteoporosis?

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

Osteoporosis is a disease with great importance in current public health due to the associated risk of fracture; therefore, a rapid and accurate diagnosis becomes increasingly important. Recent literature has described a possible relationship between the changes in the organic phase of bone and the changes in nail keratin measured through Raman spectroscopy, aiming at the development of a standard for measuring bone quality and fracture risk both rapid and accurately. This work evaluated the correlation between the bone mineral density (BMD) scores of women with and without osteoporotic disease with the changes in the Raman spectra of the nail keratin, by assessing the intensity of the peak at 510 cm−1 (S-S bridge) and the scores of principal component analysis (PCA), correlated with the values of BMD measured at the lumbar and hip. Raman spectra of ex vivo fingernails of 213 women were obtained by means of a dispersive Raman spectrometer (830 nm, 300 mW, in the spectral range between 400 and 1,800 cm−1). Peak intensities at ∼510 cm−1 (assigned to the keratin S-S bridge) were measured, and the scores of first principal component loading vectors were calculated. Results showed no differences in the mean Raman spectra of nails of groups with and without osteoporosis. No correlation was found between the BMD scores and both the intensities of the 510 cm−1 peak and the scores of the first four principal component vectors. Results suggest that BMD and fracture risk could not be assessed by the nail keratin features.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Genant HK, Cooper C, Poor G et al (1999) Interim report and recommendations of the World Health Organization task-force. Osteoporosis Int 10:259–264

    Article  CAS  Google Scholar 

  2. Diamantopoulos AP, Hoff M, Hochberg M, Haugeberg G (2013) Predictors of short- and long-term mortality in males and females with hip fracture—a prospective observational cohort study. Plos One 8:e78169

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Paschalis EP, Shane E, Lyritis G, Skarantavos G, Mendelsohn R, Boskey AL (2004) Bone fragility and collagen cross-links. J Bone Miner Res 19:2000–2004

    Article  PubMed Central  PubMed  Google Scholar 

  4. Silva LK (2003) Technology assessment in health care: bone densitometry and alternative therapies in post-menopausal osteoporosis. Cad Saude Publica 19:987–1003

    Article  PubMed  Google Scholar 

  5. Schousboe JT, Shepherd JA, Bilezikian JP, Baim S (2013) Executive summary of the 2013 International Society for Clinical Densitometry Position Development Conference on bone densitometry. J Clin Densitom 16:455–466

    Article  PubMed  Google Scholar 

  6. Lenchik L, Leib ES, Hamdy RC, Binkley NC, Miller PD, Watts NB (2002) International Society for Clinical Densitometry Position Development Panel and Scientific Advisory Committee. Executive summary international society for clinical densitometry position development conference, Denver, Colorado, July 20–22, 2001. J Clin Densitom 5:S1–S3

    Article  PubMed  Google Scholar 

  7. Turek SL (1984) Orthopaedics: principles and their application, 4th edn. Lippincott Willians & Wilkins, Philadelphia

    Google Scholar 

  8. Woolf AD, Dixon ASJ (1998) Osteoporosis: a clinical guide, 2nd edn. Martin Dunitz Ltd., United Kingdom

    Google Scholar 

  9. Draper ER, Morris MD, Camacho NP, Matousek P, Towrie M, Parker AW, Goodship AE (2005) Novel assessment of bone using time-resolved transcutaneous Raman spectroscopy. J Bone Miner Res 20:1968–1972

    Article  CAS  PubMed  Google Scholar 

  10. Gamsjager S, Zoehrer R, Roschger P, Fratzl P, Klaushofer K, Mendelsohn R, Paschalis EP (2009) Vibrational spectroscopy in biomedical science: bone. Proc SPIE 7166:716602

    Article  Google Scholar 

  11. Hanlon EB, Manoharan R, Koo TW, Shafer KE, Motz JT, Fitzmaurice M, Kramer JR, Itzkan I, Dasari RR, Feld MS (2000) Prospects for in vivo Raman spectroscopy. Phys Med Biol 45:R1–R59

    Article  CAS  PubMed  Google Scholar 

  12. Haka AS, Volynskaya Z, Gardecki JA, Nazemi J, Shenk R, Wang N, Dasari RR, Fitzmaurice M, Feld MS (2009) Diagnosing breast cancer using Raman spectroscopy: prospective analysis. J Biomed Opt 14:054023

    Article  PubMed Central  PubMed  Google Scholar 

  13. Kong K, Rowlands CJ, Varma S, Perkins W, Leach IH, Koloydenko AA, Williams HC, Notingher I (2013) Diagnosis of tumors during tissue-conserving surgery with integrated autofluorescence and Raman scattering microscopy. P Natl Acad Sci-Biol 110:15189–15194

    Article  CAS  Google Scholar 

  14. González-Solís JL, Martínez-Espinosa JC, Torres-González LA, Aguilar-Lemarroy A, Jave-Suárez LF, Palomares-Anda P (2014) Cervical cancer detection based on serum sample Raman spectroscopy. Lasers Med Sci 29:979–895. doi:10.1007/s10103-013-1447-6

    Article  PubMed  Google Scholar 

  15. Wang L, He D, Zeng J, Guan Z, Dang Q, Wang X, Wang J, Huang L, Cao P, Zhang G, Hsieh J, Fan J (2013) Raman spectroscopy, a potential tool in diagnosis and prognosis of castration-resistant prostate cancer. J Biomed Opt 18:087001

    Article  Google Scholar 

  16. Bispo JA, Vieira EES, Silveira L, Fernandes AB (2013) Correlating the amount of urea, creatinine, and glucose in urine from patients with diabetes mellitus and hypertension with the risk of developing renal lesions by means of Raman spectroscopy and principal component analysis. J Biomed Opt 18:87004

    Article  PubMed  Google Scholar 

  17. Bodanese B, Silveira L, Albertini R, Zângaro RA, Pacheco MT (2010) Differentiating normal and basal cell carcinoma human skin tissues in vitro using dispersive Raman spectroscopy: a comparison between principal components analysis and simplified biochemical models. Photomed Laser Surg 28:119–127

    Article  Google Scholar 

  18. Cheng I-F, Chang HC, Chen TY, Hu C, Yang FL (2013) Rapid (<5 min) Identification of pathogen in human blood by electrokinetic concentration and surface-enhanced Raman spectroscopy. Sci Rep 3:2365

    Google Scholar 

  19. Barman I, Dingari NC, Kang JW, Horowitz GL, Dasari RR, Feld MS (2012) Raman spectroscopy based sensitive and specific detection of glycated hemoglobin. Anal Chem 84:2474–2482

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Zavala-Alonso V, Loyola-Rodríguez JP, Terrones H, Patiño-Marín N, Martínez-Castañón GA, Anusavice K (2012) Analysis of the molecular structure of human enamel with fluorosis using micro-Raman spectroscopy. J Oral Sci 54:93–98

    Article  CAS  PubMed  Google Scholar 

  21. Silveira L, Leite KRM, Silveira FL, Srougi M, Pacheco MTT, Zângaro RA, Pasqualucci CA (2014) Discrimination of prostate carcinoma from benign prostate tissue fragments in vitro by estimating the gross biochemical alterations through Raman spectroscopy. Lasers Med Sci 29(4):1469–1477

    Article  PubMed  Google Scholar 

  22. Surmacki J, Musial J, Kordek R, Abramczyk H (2013) Raman imaging at biological interfaces: applications in breast cancer diagnosis. Mol Cancer 12:48

    Article  PubMed Central  PubMed  Google Scholar 

  23. Souza RA, Xavier M, Mangueira NM, Santos AP, Pinheiro AL, Villaverde AB, Silveira L (2014) Raman spectroscopy detection of molecular changes associated with two experimental models of osteoarthritis in rats. Lasers Med Sci 29(2):797–804

    Article  PubMed  Google Scholar 

  24. Peres MB, Silveira L, Zângaro RA, Pacheco MTT, Pasqualucci CA (2011) Classification model based on Raman spectra of selected morphological and biochemical tissue constituents for identification of atherosclerosis in human coronary arteries. Lasers Med Sci 26:645–655

    Article  PubMed  Google Scholar 

  25. Pandey G, Nakamura T, Singh RP (2008) Investigation into the correlation between viscoelastic properties of fingernails and osteoporosis. In: Proc XI Int Congress Exposition on Experimental and Applied Mechanics. 2–5 June 2008. Orlando, Florida, USA

  26. Towler MR, Wren A, Rushe N, Saunders J, Cummins NM, Jakeman PM (2007) Raman spectroscopy of the human nail: a potential tool for evaluating bone health? J Mater Sci-Mater Med 18:759–763

    Article  CAS  PubMed  Google Scholar 

  27. Cummins NM, Day JCC, Wren A, Carroll P, Murphy N, Jakeman PM, Towler MR (2010) Raman spectroscopy of fingernails: a novel tool for evaluation of bone quality? Spectroscopy Int J 24:517–524

    Article  CAS  Google Scholar 

  28. Hsu SL, Moore WH, Krimm S (1976) Vibrational spectrum of the unordered keratin polypeptide chain: a Raman study of feather. Biopolymers 15:1513–1528

    Article  CAS  PubMed  Google Scholar 

  29. Moran P, Towler MR, Chowdhury S, Saunders J, German MJ, Lawson NS, Pollock HM, Pillay I, Lyons D (2007) Preliminary work on the development of a novel detection method for osteoporosis. J Mater Sci-Mater Med 18:969–974

    Article  CAS  PubMed  Google Scholar 

  30. Carron K, Towler M (2009) Method for determination of bone fracture risk using Raman spectroscopy. Patent Application Publication US 2009/00124030 A1. 8/January/2009

  31. Towler MR, Lyons D (2009) Diagnostic methods for osteoporosis. Patent Application Publication US 2009/0099458 A9. 16/April/2009

  32. World Health Organization (1994) Assessment of fracture risk and its application to screening for postmenopausal osteoporosis. World Health Organiz Tech Rep Ser 843:1–129

    Google Scholar 

  33. Brandão CM, Camargos BM, Zerbini CA, Plapler PG, Mendonça LM, Albergaria BH, Pinheiro MM, Md P, Eis SR (2009) 2008 Official positions of the Brazilian Society for Clinical Densitometry-SBDens. Arq Bras Endocrinol Metab 53:107–112

    Article  Google Scholar 

  34. Moita Neto JM, Moita GC (1998) An introduction analysis exploratory multivariate data. Quim Nova 21:467–469

    Article  CAS  Google Scholar 

  35. Pillay I, Lyons D, German MJ, Lawson NS, Pollock HM, Saunders J, Chowdhury S, Moran P, Towler MR (2005) The use of fingernails as a means of assessing bone health: a pilot study. J Womens Health 14:339–344

    Article  CAS  Google Scholar 

  36. Bodanese B, Silveira FL, Zângaro RA, Pacheco MT, Pasqualucci CA, Silveira L (2012) Discrimination of basal cell carcinoma and melanoma from normal skin biopsies in vitro through Raman spectroscopy and principal component analysis. Photomed Laser Surg 30:381–387

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Oliveira FSS, Giana HE, Silveira L (2012) Discrimination of selected species of pathogenic bacteria using near-infrared Raman spectroscopy and principal components analysis. J Biomed Opt 17:107004

    Article  Google Scholar 

  38. González-Solís J, Luévano-Colmenero G, Vargas-Mancilla J (2013) Surface enhanced Raman spectroscopy in breast cancer cells. Laser Ther 22:37–42

    Article  PubMed Central  PubMed  Google Scholar 

  39. Sikirzhytski V, Virkler K, Lednev IK (2010) Discriminant analysis of Raman spectra for body fluid identification for forensic purposes. Sensors (Basel) 10:2869–2884

    Article  CAS  Google Scholar 

  40. Schulmerich MV, Dooley KA, Morris MD, Vanasse TM, Goldstein SA (2006) Transcutaneous fiber optic Raman spectroscopy of bone using annular illumination and a circular array of collection fibers. J Biomed Opt 11:060502

    Article  PubMed  Google Scholar 

Download references

Acknowledgement

L. Silveira Jr. acknowledges FAPESP (Grant No. 2009/01788-5) for the partial financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Landulfo Silveira Jr..

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mussatto, J.C., Perez, M.C., de Souza, R.A. et al. Could the bone mineral density (T-score) be correlated with the Raman spectral features of keratin from women’s nails and be used to predict osteoporosis?. Lasers Med Sci 30, 287–294 (2015). https://doi.org/10.1007/s10103-014-1647-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-014-1647-8

Keywords

Navigation