Skip to main content
Log in

Mathematical programming synthesis of non-isothermal water networks by using a compact/reduced superstructure and an MINLP model

  • Original Paper
  • Published:
Clean Technologies and Environmental Policy Aims and scope Submit manuscript

Abstract

The synthesis problems of non-isothermal water networks, combining heat exchanger network and water network (WN), usually consist of a significant number of constraints and variables, namely, flow rates, contaminant concentrations, temperatures and a large number of non-linear terms. In most cases, solving medium and large-scale synthesis problems is computationally too expensive and challenging. In order to circumvent that problem, we propose a compact superstructure and mixed-integer non-linear programming model for the simultaneous synthesis of non-isothermal WNs. The proposed superstructure includes heat integration stages enabling direct and indirect heat exchanges with a manageable number of hot and cold streams. This reduces the models size enabling easier solutions of the synthesis problems using local solvers. In addition, a superstructure reduction strategy is proposed making the superstructure flexible and adaptable for different types of problems, namely, pinched and threshold, and providing additional reduction of connections within the proposed superstructure. The proposed model is solved using a two-step solution strategy including initialisation and design steps. The model is applied to the examples of different complexities including single and multiple contaminant problems, and water-using and wastewater treatment units. Using the proposed iterative strategy, the improved locally optimal solutions are identified for most examples, minimising the total annual cost of the overall network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

c :

Contaminant

cs :

Heating stage for cold streams

hs :

Cooling stage for hot streams

i :

Hot process stream

j :

Cold process stream

p :

Process unit

s :

Freshwater source

t :

Treatment unit

CP:

Cold process stream

CST:

Heating stages

HP:

Hot process stream

HST:

Cooling stages

PU:

Process unit

SC:

Contaminant

SFW:

Freshwater source

TU:

Treatment unit

AF:

Annual investment factor for treatment units

B :

Cost exponent for heat exchangers

C CU :

Cold utility cost per unit of heat load [$/(W year)]

CF:

Fixed charge for heat exchangers ($)

CFW s :

Cost of freshwater ($/kg)

C HU :

Hot utility cost per unit of heat load [$/(W year)]

C i,CU :

Area cost coefficient for coolers ($/m2)

C j,HU :

Area cost coefficient for heaters ($/m2)

C i,j :

Area cost coefficient for heat exchangers ($/m2)

C p :

Specific heat capacity of water [J/(kg °C)]

EMAT:

Exchanger minimum approach temperature (°C)

H :

Plant operating hours per annum (h)

h CU :

Individual heat transfer coefficient for cold utility [W/(m2 °C)]

h HU :

Individual heat transfer coefficient for hot utility [W/(m2 °C)]

h i :

Individual heat transfer coefficient for hot stream i [W/(m2 °C)]

h j :

Individual heat transfer coefficient for cold stream j [W/(m2 °C)]

HRAT:

Heat recovery approach temperature (°C)

IC t :

Investment cost coefficient for treatment unit t ($/t)

OC t :

Operating cost coefficient for treatment unit t ($/h)

tcuin:

Inlet temperature of cold utility (°C)

tcuout:

Outlet temperature of cold utility (°C)

thuin:

Inlet temperature of hot utility (°C)

thuout:

Outlet temperature of hot utility (°C)

U :

Overall heat transfer coefficient [W/(m2 °C)]

α t :

Investment cost exponent for treatment unit t

xFW s,c :

Concentration of contaminant c in freshwater source s (ppm)

\( {\text{xPU}}_{p,c}^{{({\text{in}},\hbox{max} )}} \) :

Maximum concentration of contaminant c at the inlet to process unit p (ppm)

\( {\text{xPU}}_{p,c}^{{({\text{out}},\hbox{max} )}} \) :

Maximum concentration of contaminant c at the outlet from process unit p (ppm)

\( {\text{TPU}}_{p}^{{({\text{in}})}} \) :

Inlet temperature of the process unit p (°C)

\( {\text{TTU}}_{t}^{{({\text{in}})}} \) :

Inlet temperature of the treatment unit t (°C)

\( {\text{TPU}}_{p}^{{({\text{out}})}} \) :

Outlet temperature of the process unit p (°C)

\( {\text{TTU}}_{t}^{{({\text{out}})}} \) :

Outlet temperature of the treatment unit t (°C)

\( T_{\text{w}}^{(\hbox{max} )} \) :

Maximum temperature of water streams within the network (°C)

\( T_{\text{w}}^{(\hbox{min} )} \) :

Minimum temperature of water streams within the network (°C)

TFW s :

Temperature of freshwater from source s (°C)

TWW(out) :

Temperature of wastewater discharged into the environment (°C)

LPU p,c :

Mass load of contaminant c in process unit p (kg/s)

N STU :

Number of treatment units allowed to be selected

RR t,c :

Removal ratio of contaminant c in treatment unit t (%/100)

Γ :

Upper bound for driving force

FW s :

Mass flow rate of freshwater from source s (kg/s)

FIP s,p :

Mass flow rate of freshwater from source s to process unit p (kg/s)

FIT s,t :

Mass flow rate of freshwater from source s to treatment unit t (kg/s)

FIHS s,hs :

Mass flow rate of freshwater from source s to cooling stage hs (kg/s)

FICS s,cs :

Mass flow rate of freshwater from source s to heating stage cs (kg/s)

FIE s :

Mass flow rate of freshwater from source s to wastewater mixer (kg/s)

FHS hs :

Water mass flow rate at cooling stage hs (kg/s)

FPHS p,hs :

Mass flow rate of water from process unit p to cooling stage hs (kg/s)

FTHS t,hs :

Mass flow rate of water from treatment unit t to cooling stage hs (kg/s)

\( {\text{FRHS}}_{{{{hs}}^{'} ,{{hs}}}} \) :

Mass flow rate of water from cooling stage hs′ to cooling stage hs (kg/s)

FCSHS cs,hs :

Mass flow rate of water from heating stage cs to cooling stage hs (kg/s)

FCS cs :

Water mass flow rate at heating stage cs (kg/s)

FPCS p,cs :

Mass flow rate of water from process unit p to heating stage cs (kg/s)

FTCS t,cs :

Mass flow rate of water from treatment unit t to heating stage cs (kg/s)

\( {\text{FRCS}}_{{{{cs}}^{'} ,{{cs}}}} \) :

Mass flow rate of water from heating stage cs′ to heating stage cs (kg/s)

FHSP hs,p :

Mass flow rate of water from cooling stage hs to process unit p (kg/s)

FHST hs,t :

Mass flow rate of water from cooling stage hs to treatment t (kg/s)

FHSCS hs,cs :

Mass flow rate of water from cooling stage hs to heating stage cs (kg/s)

FHSE hs :

Mass flow rate of water from cooling stage hs to wastewater mixer (kg/s)

FCSP cs,p :

Mass flow rate of water from heating stage cs to process unit p (kg/s)

FCST cs,t :

Mass flow rate of water from heating stage cs to treatment unit t (kg/s)

FCSE cs :

Mass flow rate of water from heating stage cs to wastewater mixer (kg/s)

\( {\text{FPU}}_{p}^{{({\text{in}})}} \) :

Water flow rate at the process unit p inlet (kg/s)

\( {\text{FPU}}_{p}^{{({\text{out}})}} \) :

Water flow rate at the process unit p outlet (kg/s)

\( {\text{FP}}_{{p^{'} ,p}} \) :

Water flow rate from process unit p′ to process unit p (kg/s)

FTP t,p :

Water flow rate from treatment unit t to process unit p (kg/s)

FPE p :

Mass flow rate of water from process unit p to wastewater mixer (kg/s)

\( {\text{FTU}}_{t}^{{({\text{in}})}} \) :

Water flow rate at the treatment unit t inlet (kg/s)

\( {\text{FTU}}_{t}^{{({\text{out}})}} \) :

Water flow rate at the treatment unit t outlet (kg/s)

FPT p,t :

Water flow rate from process unit p to treatment unit t (kg/s)

\( {\text{FT}}_{{t^{'} ,t}} \) :

Water flow rate from treatment unit t′ to treatment unit t (kg/s)

FTE t :

Mass flow rate of water from treatment unit t to wastewater mixer (kg/s)

FWW(out) :

Mass flow rate of water discharged into the environment (kg/s)

xFHS hs,c :

Concentration of contaminant c at the cooling stage hs (ppm)

xFCS cs,c :

Concentration of contaminant c at the heating stage cs (ppm)

\( {\text{xPU}}_{p,c}^{{({\text{in}})}} \) :

Concentration of contaminant c at the inlet to process unit p (ppm)

\( {\text{xPU}}_{p,c}^{{({\text{out}})}} \) :

Concentration of contaminant c at the outlet from process unit p (ppm)

\( {\text{xTU}}_{t,c}^{{({\text{in}})}} \) :

Concentration of contaminant c at the inlet to treatment unit t (ppm)

\( {\text{xTU}}_{t,c}^{{({\text{out}})}} \) :

Concentration of contaminant c at the outlet from treatment unit t (ppm)

\( {\text{xWW}}_{c}^{{({\text{out}})}} \) :

Concentration of contaminant c in the wastewater discharged into the environment (ppm)

\( {\text{THS}}_{{hs}}^{{({\text{in}})}} \) :

Inlet temperature of hot stream at cooling stage hs (°C)

\( {\text{THS}}_{{hs}}^{{({\text{out}})}} \) :

Outlet temperature of hot stream at cooling stage hs (°C)

\( {\text{TCS}}_{{cs}}^{{({\text{in}})}} \) :

Inlet temperature of cold stream at heating stage cs (°C)

\( {\text{TCS}}_{{cs}}^{{({\text{out}})}} \) :

Outlet temperature of cold stream at heating stage cs (°C)

fc j :

Heat capacity flowrate of cold stream j (W/°C)

fh i :

Heat capacity flowrate of hot stream i (W/°C)

thin i :

Inlet temperature of hot stream i (°C)

thout i :

Outlet temperature of hot stream i (°C)

tcin j :

Inlet temperature of cold stream j (°C)

tcout j :

Outlet temperature of cold stream j (°C)

qhu:

Hot utility load (W)

qcu:

Cold utility load (W)

ech i :

Heat content of hot stream i (W)

ecc j :

Heat content of cold stream j (W)

qc i :

Heat load exchanged between hot stream i with the cold utility (W)

qh j :

Heat load exchanged between cold stream j with the hot utility, W

q i,j,k :

Heat load exchanged by hot stream i and cold stream j in stage k (W)

th i,k :

Temperature of hot stream i at the temperature location k (°C)

tc j,k :

Temperature of cold stream j at the temperature location k (°C)

Δt i,j,k :

Temperature approach between hot i and cold j at temperature location k (°C)

Δthu j :

Temperature approach between hot utility and cold stream j (°C)

Δtcu i :

Temperature approach between cold utility and hot stream i (°C)

z i,j,k :

Existence of match (i, j) in stage k

zcu i :

Existence of match between hot stream i and cold utility

zhu j :

Existence of match between cold stream j and hot utility

yTU t :

Existence of treatment unit t

CU:

Cold utility

GAMS:

General algebraic modelling system

HEN:

Heat exchanger network

HU:

Hot utility

in:

Inlet

L:

Lower bound

LMTD:

Logarithmic mean temperature difference

LP:

Linear programming

LV:

Level value

max:

Maximum

MILP:

Mixed-integer linear programming

min:

Minimum

MINLP:

Mixed-integer non-linear programming

NLP:

Non-linear programming

NPV:

Net present value

out:

Outlet

TAC:

Total annual cost

U:

Upper bound

WN:

Water network

WTN:

Wastewater treatment network

References

Download references

Acknowledgments

The authors are grateful to the Swiss National Science Foundation (SNSF) and the Swiss Agency for Development and Cooperation (SDC) for providing financial support within the SCOPES 2013–2016 (Scientific Co-operation between Eastern Europe and Switzerland) Joint Research Project (CAPE-EWWR: IZ73Z0_152622/1), Slovenian Research Agency (Program No. P2-0032) and Bilateral Project (No. 05-39-116-14/14) between Bosnia and Herzegovina and Slovenia as well as for the support from the Erasmus Mundus Action 2-JoinEUsee Penta programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nidret Ibrić.

Appendices

Appendix 1

Simultaneous optimisation and heat integration model (M2)

The minimum consumption of hot utility (qhu) is constrained by inequalities Eqs. (31), (32) according to the pinch location method (Duran and Grossmann 1986). Minimum consumption of cold utility (qcu) is defined by the global energy balance given by Eq. (33).

$$ {\text{qhu}} \ge \left( {\sum\limits_{{j \in {\text{CP}}}} {{{fc}}_{j} \cdot \left( {\hbox{max} \left( {0,\;{\text{tcout}}_{j} - \left( {{\text{thin}}_{{i^{'} }} - {\text{HRAT}}} \right)} \right) - \hbox{max} \left( {0,\;{\text{tcin}}_{j} - \left( {{\text{thin}}_{{i^{'} }} - {\text{HRAT}}} \right)} \right)} \right)} } \right) - \left( {\sum\limits_{{i \in {\text{HP}}}} {{{fh}}_{i} \cdot \left( {\hbox{max} \left( {0,\;{\text{thin}}_{i} - {\text{thin}}_{{i^{'} }} } \right) - \hbox{max} \left( {0,\;{\text{thout}}_{i} - {\text{thin}}_{{i^{'} }} } \right)} \right)} } \right)\quad \forall i^{'} \in {\text{HP}}, $$
(31)
$$ {\text{qhu}} \ge \left( {\sum\limits_{{j \in {\text{CP}}}} {{{fc}}_{j} } \cdot \left( {\hbox{max} \left( {0,\;{\text{tcout}}_{j} - {\text{tcin}}_{{j^{'} }} } \right)} \right) - \hbox{max} \left( {0,\;{\text{tcin}}_{j} - {\text{tcin}}_{{j^{'} }} } \right)} \right) - \left( {\sum\limits_{{i \in {\text{HP}}}} {{{fh}}_{i} \cdot \left( {\hbox{max} \left( {0,\;{\text{thin}}_{i} - \left( {{\text{tcin}}_{{j^{'} }} + {\text{HRAT}}} \right)} \right) - \hbox{max} \left( {0,\;{\text{thout}}_{i} - \left( {{\text{tcin}}_{{j^{'} }} + {\text{HRAT}}} \right)} \right)} \right)} } \right)\quad \forall j^{'} \in {\text{CP}}, $$
(32)
$$ {\text{qhu}} + \sum\limits_{{i \in {\text{HP}}}} {{\text{ech}}_{i} = {\text{qcu}} + \sum\limits_{{j \in {\text{CP}}}} {{\text{ecc}}_{j} } } . $$
(33)

Equations (34) and (35) give heat content of hot and cold streams.

$$ {\text{ech}}_{i} = {{fh}}_{i} \cdot \left( {{\text{thin}}_{i} - {\text{thout}}_{i} } \right)\quad \forall i \in {\text{HP,}} $$
(34)
$$ {\text{ecc}}_{j} = {{fc}}_{j} \cdot \left( {{\text{tcout}}_{j} - {\text{tcin}}_{j} } \right)\quad \forall j \in {\text{HC}} . $$
(35)

Within the model M1, flow rates of the process water streams are unknown as well as the inlet/outlet temperatures of the hot/cold streams. Accordingly, discontinuous derivatives appear in Eqs. (31) and (32) making the NLP/MINLP models (M1–2) difficult to solve. In order to circumvent this problem, a smooth approximation of the max operator was used (Biegler et al. 1997).

HEN synthesis model (M3)

The following Eqs. (36)–(56) were included in the modified HEN synthesis model proposed by Yee and Grossmann (1990):

Total energy exchanged by hot stream i and cold stream j

$$ {{fh}}_{i} \cdot \left( {{\text{thin}}_{i} - {\text{thout}}_{i} } \right) = \sum\limits_{{j \in {\text{CP}}}} {\sum\limits_{{k \in {\text{ST}}}} {q_{i,j,k} + {\text{qc}}_{i} } } \quad i \in {\text{HP,}} $$
(36)
$$ {{fc}}_{j} \cdot \left( {{\text{tcout}}_{j} - {\text{tcin}}_{j} } \right) = \sum\limits_{{i \in {\text{HP}}}} {\sum\limits_{{k \in {\text{ST}}}} {q_{i,j,k} + {\text{qh}}_{j} } } \quad j \in {\text{CP}} . $$
(37)

Energy exchanged by hot stream i and cold stream j in stage k

$$ {{fh}}_{i} \cdot \left( {{\text{th}}_{i,k} - {\text{th}}_{i,k + 1} } \right) = \sum\limits_{{j \in {\text{CP}}}} {q_{i,j,k} } \quad i \in {\text{HP}},\quad k \in {\text{ST,}} $$
(38)
$$ {{fc}}_{j} \cdot \left( {{\text{tc}}_{j,k} - {\text{tc}}_{j,k + 1} } \right) = \sum\limits_{{i \in {\text{HP}}}} {q_{i,j,k} } \quad j \in {\text{CP}},\quad k \in {\text{ST}} . $$
(39)

Energy exchanged by hot stream i with the cold utility and cold stream j with the hot utility

$$ {{fh}}_{i} \cdot \left( {{\text{th}}_{{{\text{i}},{\text{NOK}} + 1}} - {\text{thout}}_{i} } \right) = {\text{qc}}_{i} \quad i \in {\text{HP,}} $$
(40)
$$ {{fc}}_{j} \cdot \left( {{\text{tcout}}_{j} - t_{i,1} } \right) = {\text{qh}}_{j} \quad j \in {\text{CP}} . $$
(41)

Supply temperature of hot and cold streams i and j

$$ {\text{thin}}_{\text{i}} = {\text{th}}_{i,1} \quad i \in {\text{HP,}} $$
(42)
$$ {\text{tcin}}_{j} = {\text{tc}}_{{{{j}},{\text{NOK}} + 1}} \quad j \in {\text{CP}} . $$
(43)

Feasibilities of temperatures across temperature intervals

$$ {\text{th}}_{i,k} \ge {\text{th}}_{i,k + 1} \quad i \in {\text{HP}},\quad k \in {\text{ST,}} $$
(44)
$$ {\text{tc}}_{j,k} \ge {\text{tc}}_{j,k + 1} \quad j \in {\text{CP}}, \quad k \in {\text{ST,}} $$
(45)
$$ {\text{th}}_{{{{i}},{\text{NOK}} + 1}} \ge {\text{thout}}_{i} \quad i \in {\text{HP,}} $$
(46)
$$ {\text{tcout}}_{j} \ge {\text{tc}}_{j,1} \quad j \in {\text{CP}} . $$
(47)

Logical constraints for heat loads

$$ q_{i,j,k} - \hbox{min} \left( {{\text{ech}}_{i}^{\text{U}} ,\;{\text{ecc}}_{j}^{\text{U}} } \right) \cdot z_{i,j,k} \le 0\quad i \in {\text{HP}}, \quad j \in {\text{CP}},\quad k \in {\text{ST,}} $$
(48)
$$ {\text{qc}}_{i} - {\text{ech}}_{i}^{\text{U}} \cdot {\text{zcu}}_{i} \le 0\quad i \in {\text{HP,}} $$
(49)
$$ {\text{qh}}_{j} - {\text{ecc}}_{j}^{\text{U}} \cdot {\text{zhu}}_{j} \le 0\quad j \in {\text{CP}} . $$
(50)

Logical constraints for temperature differences

$$ \Delta t_{i,j,k} \le {\text{th}}_{i,k} - {\text{tc}}_{j,k} + \varGamma \cdot \left( {1 - z_{i,j,k} } \right)\quad i \in {\text{HP}},\quad j \in {\text{CP}}, \quad k \in {\text{ST,}} $$
(51)
$$ \Delta t_{i,j,k + 1} \le {\text{th}}_{i,k + 1} - {\text{tc}}_{j,k + 1} + \varGamma \cdot \left( {1 - z_{i,j,k} } \right)\quad i \in {\text{HP}},\quad j \in {\text{CP}},\quad k \in {\text{ST,}} $$
(52)
$$ \Delta {\text{thu}}_{j} \le {\text{thuout}} - {\text{tc}}_{j,1} \quad j \in {\text{CP,}} $$
(53)
$$ \Delta {\text{tcu}}_{i} \le {\text{th}}_{{{{i}},{\text{NOK}} + 1}} - {\text{tcuout}}\quad i \in {\text{HP}} . $$
(54)

Heat loads of hot stream i and cold stream j

$$ {\text{ech}}_{i} = {{fh}}_{i} \cdot \left( {{\text{thin}}_{i} - {\text{thout}}_{i} } \right)\quad \forall i \in {\text{HP,}} $$
(55)
$$ {\text{ecc}}_{j} = {{fc}}_{j} \cdot \left( {{\text{tcout}}_{j} - {\text{tcin}}_{j} } \right)\quad \forall j \in {\text{CP}} . $$
(56)

Connecting equations for the combined models

According to the proposed solutions strategy, as described in detail in section Solution approach, firstly a combined models M1–2 was solved providing initialisation and water/utility bounds, and afterwards a combined model M1–3 for the simultaneous synthesis of non-isothermal WNs is solved. In order to enable a solution of the combined models, appropriate connecting equations have to be defined. Heat capacity flow rates and inlet/outlet temperatures that appear in models M2 and M3 related to the flow rates and temperatures of the process water streams within the model M1 were given as follows.

Connecting equations for hot water streams

$$ {{fh}}_{i} = {\text{FHS}}_{{hs}} \cdot C_{p} \quad \forall {{hs}} \in {\text{HST}},\quad i \in {\text{HP}},\quad i = {{hs}}, $$
(57)
$$ {\text{thin}}_{i} = {\text{THS}}_{{hs}}^{{({\text{in}})}} \quad \forall {{hs}} \in {\text{HST}},\quad i \in {\text{HP}},\quad i = {{hs}}, $$
(58)
$$ {\text{thout}}_{i} = {\text{THS}}_{{hs}}^{{({\text{out}})}} \quad \forall {{hs}} \in {\text{HST}},\quad i \in {\text{HP}},\quad i = {{hs}}. $$
(59)

Connecting equations for cold water streams

$$ {{fc}}_{j} = {\text{FCS}}_{{cs}} \cdot C_{p} \quad \forall {{cs}} \in {\text{CST}},\quad {\kern 1pt} j \in {\text{CP}},\quad j = {{cs}}, $$
(60)
$$ {\text{tcin}}_{j} = {\text{TCS}}_{{cs}}^{{({\text{in}})}} \quad \forall {{cs}} \in {\text{CST}},\quad {\kern 1pt} j \in {\text{CP}},\quad j = {{cs,}} $$
(61)
$$ {\text{tcout}}_{j} = {\text{TCS}}_{{cs}}^{{({\text{out}})}} \quad \forall {{cs}} \in {\text{CST}},\quad j \in {\text{CP}},\quad j = {{cs}} . $$
(62)

Additional constraints

By solving the models (M1–2) an initialisation point can be provided for the models (M1–3), which is solved in the second synthesis step, as well as providing rigorous upper and lower bounds for freshwater and utilities consumption. The upper and lower bounds represent level values (LVs) of variables from the models M1–2. Equation (63) is applied in the case studies involving only one water source. Constraining freshwater consumption on the minimum values can cause significant increase in investment as addressed in Example 4 regarding the pinched problems with multiple water sources.

$$ \sum\limits_{{s \in {\text{SFW}}}} {{\text{FW}}_{s} \le \sum\limits_{{s \in {\text{SFW}}}} {{\text{FW}}_{s}^{\text{LV}} } } \quad |{\text{SFW|}} = 1 , $$
(63)
$$ \sum\limits_{{i \in {\text{HP}}}} {{\text{qc}}_{i} \ge {\text{qcu}}^{{{\text{LV,HRAT}} \le {\text{EMAT}}}} } , $$
(64)
$$ \sum\limits_{{j \in {\text{CP}}}} {{\text{qh}}_{j} \ge {\text{qhu}}^{{{\text{LV,HRAT}} \le {\text{EMAT}}}} } , $$
(65)
$$ \sum\limits_{{i \in {\text{HP}}}} {{\text{qc}}_{i} \le {\text{qcu}}^{{{\text{LV,HRAT}} \ge {\text{EMAT}}}} } , $$
(66)
$$ \sum\limits_{{j \in {\text{CP}}}} {{\text{qh}}_{j} \le {\text{qhu}}^{{{\text{LV}},{\text{HRAT}} \ge {\text{EMAT}}}} } , $$
(67)
$$ {\text{THS}}_{{hs}}^{{({\text{in}})}} \ge {\text{THS}}_{{hs}}^{{({\text{out)}}}} \quad {{hs}} \in {\text{HST,}} $$
(68)
$$ {\text{TCS}}_{{cs}}^{{({\text{out}})}} \ge {\text{TCS}}_{{cs}}^{{({\text{in}})}} \quad {{cs}} \in {\text{CST}} . $$
(69)

Heat exchanger related parameters

Heat exchange areas

$$ A_{i,j,k} = \frac{{q_{i,j,k} }}{{U_{i,j} \cdot {\text{LMTD}}_{i,j,k} }}\quad i \in {\text{HP}}, \quad j \in {\text{CP}},\quad k \in {\text{ST}}, $$
(70)
$$ A_{{{{i}},{\text{CU}}}} = \frac{{{\text{qc}}_{i} }}{{U_{{{{i}},{\text{CU}}}} \cdot {\text{LMTD}}_{{{{i}},{\text{CU}}}} }}\quad i \in {\text{HP,}} $$
(71)
$$ A_{{{{j}},{\text{HU}}}} = \frac{{{\text{qh}}_{j} }}{{U_{{{{j}},{\text{HU}}}} \cdot {\text{LMTD}}_{{{{j}},{\text{HU}}}} }}\quad j \in {\text{CP}} . $$
(72)

Temperature-driving forces

$$ {\text{LMTD}}_{i,j,k} = \left[ {\left( {\Delta t_{i,j,k} \cdot \Delta t_{i,j,k + 1} } \right) \cdot \frac{{(\Delta t_{i,j,k} + \Delta t_{i,j,k + 1} )}}{2}} \right]^{1/3} \quad i \in {\text{HP}}, \quad j \in {\text{CP}}, \quad k \in {\text{ST,}} $$
(73)
$$ {\text{LMTD}}_{{{{i}},{\text{CU}}}} = \left[ {\left( {\Delta {\text{tcu}}_{i} \cdot \left( {{\text{thout}}_{i} - {\text{tcuin}}} \right)} \right) \cdot \frac{{(\Delta t{\text{cu}}_{i} + {\text{thout}}_{i} - {\text{tcuin}})}}{2}} \right]^{1/3} \quad i \in {\text{HP,}} $$
(74)
$$ {\text{LMTD}}_{{{{j}},{\text{HU}}}} = \left[ {\left( {\Delta {\text{thu}}_{j} \cdot \left( {{\text{thuin}} - {\text{tcout}}_{j} } \right)} \right) \cdot \frac{{(\Delta {\text{thu}}_{j} + {\text{thuin}} - {\text{tcout}}_{j} )}}{2}} \right]^{1/3} \quad j \in {\text{CP}} . $$
(75)

Heat transfer coefficients

$$ \frac{1}{{U_{i,j} }} = \frac{1}{{h_{i} }} + \frac{1}{{h_{j} }}\quad i \in {\text{HP}}, \quad j \in {\text{CP}}, $$
(76)
$$ \frac{1}{{U_{{{{i}},{\text{CU}}}} }} = \frac{1}{{h_{i} }} + \frac{1}{{h_{\text{CU}} }}\quad i \in {\text{HP,}} $$
(77)
$$ \frac{1}{{U_{{{{j}},{\text{HU}}}} }} = \frac{1}{{h_{j} }} + \frac{1}{{h_{\text{HU}} }}\quad j \in {\text{CP}} . $$
(78)

Appendix 2

Variable bounds for the water network model (M1)

Based on the data given as parameters for each example (mass load of contaminants and maximum inlet and outlet contaminant concentration), the maximum and minimum water flowrate required for each process unit can be calculated as follows:

$$ {\text{FPU}}_{p,c}^{(\hbox{max} )} = \frac{{{\text{LPU}}_{p,c} }}{{({\text{xPU}}_{p,c}^{{({\text{out}},\hbox{max} )}} - {\text{xPU}}_{p,c}^{{({\text{in}},\hbox{max} )}} )}}\quad \forall p \in {\text{PU}}, \quad \forall c \in {\text{SC}}, $$
(79)
$$ {\text{FPU}}_{p,c}^{(\hbox{min} )} = \frac{{{\text{LPU}}_{p,c} }}{{({\text{xPU}}_{p,c}^{{({\text{out}},\hbox{max} )}} - 0)}}\quad \forall p \in {\text{PU}}, \quad \forall c \in {\text{SC}}, $$
(80)
$$ {\text{FPU}}_{p}^{(\hbox{max} )} = \max_{{c \in {\text{SC}}}} \left( {{\text{FPU}}_{p,c}^{(\hbox{max} )} } \right)\quad \forall p \in {\text{PU,}} $$
(81)
$$ {\text{FPU}}_{p}^{(\hbox{min} )} = \max_{{c \in {\text{SC}}}} \left( {{\text{FPU}}_{p,c}^{(\hbox{min} )} } \right)\quad \forall p \in {\text{PU}} . $$
(82)

Accordingly, if each process unit used freshwater (no water reuse), a process would consume a maximum amount of freshwater.

$$ {\text{FW}}^{{(\max )}} ~ = \sum\limits_{{p \in {\text{PU}}}} {{\text{FPU}}_{p}^{{(\max )}} } \quad \forall s \in {\text{SFW}}. $$
(83)

Equations (79)–(83) are used for defining upper bounds for flow rates for each water stream as follows:

$$ {\text{FW}}_{s}^{\text{U}} = {\text{FW}}^{{({ \hbox{max} })}} \quad \forall s \in {\text{SFW,}} $$
(84)
$$ {\text{FIHS}}_{{{{s}},{{hs}}}}^{\text{U}} = {\text{FW}}^{(\hbox{max} )} \quad \forall s \in {\text{SFW}},\quad \forall {{hs}} \in {\text{HST,}} $$
(85)
$$ {\text{FICS}}_{{{{s}},{{cs}}}}^{\text{U}} = {\text{FW}}^{(\hbox{max} )} \quad \forall s \in {\text{SFW}}, \quad \forall {{cs}} \in {\text{CST,}} $$
(86)
$$ {\text{FIP}}_{s,p}^{\text{U}} = {\text{FPU}}_{p}^{{ ( {\text{max)}}}} \quad \forall s \in {\text{SFW}}, \quad \forall p \in {\text{PU,}} $$
(87)
$$ {\text{FIE}}_{s}^{\text{U}} = {\text{FW}}^{(\hbox{max} )} \quad \forall s \in {\text{SFW,}} $$
(88)
$$ {\text{FIT}}_{s,t}^{\text{U}} = {\text{FW}}^{(\hbox{max} )} \quad \forall s \in {\text{SFW}}, \quad \forall t \in {\text{TU,}} $$
(89)
$$ {\text{FHS}}_{{hs}}^{\text{U}} = {\text{FW}}^{(\hbox{max} )} \quad \forall {{hs}} \in {\text{HST,}} $$
(90)
$$ {\text{FCS}}_{{cs}}^{\text{U}} = {\text{FW}}^{(\hbox{max} )} \quad \forall {{cs}} \in {\text{CST,}} $$
(91)
$$ {\text{FRHS}}_{{{{hs,hs}}^{'} }}^{\text{U}} = {\text{FW}}^{(\hbox{max} )} \quad \forall {{hs}} \in {\text{HST}},\quad \forall {{hs}}^{'} \in {\text{HST,}} $$
(92)
$$ {\text{FRCS}}_{{{{cs}},{{cs}}^{'} }}^{\text{U}} = {\text{FW}}^{(\hbox{max} )} \quad \forall {{cs}} \in {\text{CST}}, \quad \forall {{cs}}^{'} \in {\text{CST,}} $$
(93)
$$ {\text{FHSP}}_{{{{hs}},{{p}}}}^{\text{U}} = {\text{FPU}}_{p}^{(\hbox{max} )} \quad \forall {{hs}} \in {\text{HST}},\quad \forall p \in {\text{PU,}} $$
(94)
$$ {\text{FCSP}}_{{{{cs}},{{p}}}}^{\text{U}} = {\text{FPU}}_{p}^{(\hbox{max} )} \quad \forall {{cs}} \in {\text{CST}}, \quad \forall p \in {\text{PU,}} $$
(95)
$$ {\text{FHST}}_{{{{hs}},{{t}}}}^{\text{U}} = {\text{FW}}^{(\hbox{max} )} \quad \forall {{hs}} \in {\text{HST}},\quad \forall t \in {\text{TU,}} $$
(96)
$$ {\text{FCST}}_{{{{cs}},{{t}}}}^{\text{U}} = {\text{FW}}^{(\hbox{max} )} \quad \forall {{cs}} \in {\text{CST}}, \quad \forall t \in {\text{TU,}} $$
(97)
$$ {\text{FHSE}}_{{hs}}^{\text{U}} = {\text{FW}}^{(\hbox{max} )} \quad \forall {{hs}} \in {\text{HST,}} $$
(98)
$$ {\text{FCSE}}_{{cs}}^{\text{U}} = {\text{FW}}^{(\hbox{max} )} \quad \forall {{cs}} \in {\text{CST,}} $$
(99)
$$ {\text{FHSCS}}_{{{{hs}},{{cs}}}}^{\text{U}} = {\text{FW}}^{(\hbox{max} )} \quad \forall {{hs}} \in {\text{HST}}, \quad \forall {{cs}} \in {\text{CST,}} $$
(100)
$$ {\text{FCSHS}}_{{{{cs}},{{hs}}}}^{\text{U}} = {\text{FW}}^{(\hbox{max} )} \quad \forall {{cs}} \in {\text{CST}},\quad \forall {{hs}} \in {\text{HST,}} $$
(101)
$$ {\text{FPU}}_{p}^{{({\text{in}}),{\text{U}}}} = {\text{FPU}}_{p}^{{({ \hbox{max} })}} \quad \forall p \in {\text{PU,}} $$
(102)
$$ {\text{FPU}}_{p}^{{({\text{in}}),{\text{L}}}} = {\text{FPU}}_{p}^{{({ \hbox{min} })}} \quad \forall p \in {\text{PU,}} $$
(103)
$$ {\text{FPU}}_{p}^{{({\text{out}}),{\text{U}}}} = {\text{FPU}}_{p}^{{({ \hbox{max} })}} \quad \forall p \in {\text{PU,}} $$
(104)
$$ {\text{FPU}}_{p}^{{({\text{out}}),{\text{L}}}} = {\text{FPU}}_{p}^{{({ \hbox{min} })}} \quad \forall p \in {\text{PU,}} $$
(105)
$$ {\text{FP}}_{{p^{'} ,p}}^{\text{U}} = {\text{FPU}}_{{p^{'} }}^{{ ( {\text{max)}}}} \quad \forall p \in {\text{PU}},\quad \forall p^{'} \in {\text{PU}},\quad {\text{FPU}}_{{p^{'} }}^{(\hbox{max} )} \le {\text{FPU}}_{p}^{(\hbox{max} )} , $$
(106)
$$ {\text{FP}}_{{p^{'} ,p}}^{\text{U}} = {\text{FPU}}_{p}^{{ ( {\text{max)}}}} \quad \forall p \in {\text{PU}},\quad \forall p^{'} \in {\text{PU}},\quad {\text{FPU}}_{{p^{'} }}^{(\hbox{max} )} \ge {\text{FPU}}_{p}^{(\hbox{max} )} , $$
(107)
$$ {\text{FPHS}}_{{{{p}},{{hs}}}}^{\text{U}} = {\text{FPU}}_{p}^{(\hbox{max} )} \quad \forall p \in {\text{PU}},\quad \forall {{hs}} \in {\text{HST,}} $$
(108)
$$ {\text{FPCS}}_{{{{p}},{{cs}}}}^{\text{U}} = {\text{FPU}}_{p}^{(\hbox{max} )} \quad \forall p \in {\text{PU}},\quad \forall {{cs}} \in {\text{CST,}} $$
(109)
$$ {\text{FPE}}_{p}^{\text{U}} = {\text{FPU}}_{p}^{{ ( {\text{max)}}}} \quad \forall p \in {\text{PU,}} $$
(110)
$$ {\text{FPT}}_{p,t}^{\text{U}} = {\text{FPU}}_{p}^{{ ( {\text{max)}}}} \quad \forall p \in {\text{PU}}, \quad \forall t \in {\text{TU,}} $$
(111)
$$ {\text{FTU}}_{t}^{{({\text{in}}),{\text{U}}}} = {\text{FW}}^{(\hbox{max} )} \quad \forall t \in {\text{TU,}} $$
(112)
$$ {\text{FTU}}_{t}^{{({\text{out}}),{\text{U}}}} = {\text{FW}}^{(\hbox{max} )} \quad \forall t \in {\text{TU,}} $$
(113)
$$ {\text{FT}}_{{t,t^{'} }}^{\text{U}} = {\text{FW}}^{(\hbox{max} )} \quad \forall t \in {\text{TU}}, \quad \forall t^{'} \in {\text{TU}}, $$
(114)
$$ {\text{FTE}}_{t}^{\text{U}} = {\text{FW}}^{(\hbox{max} )} \quad \forall t \in {\text{TU,}} $$
(115)
$$ {\text{FTHS}}_{{{{t}},{{hs}}}}^{\text{U}} = {\text{FW}}^{(\hbox{max} )} \quad \forall t \in {\text{TU}}, \quad \forall {{hs}} \in {\text{HST,}} $$
(116)
$$ {\text{FTCS}}_{{{{t}},{{cs}}}}^{\text{U}} = {\text{FW}}^{(\hbox{max} )} \quad \forall t \in {\text{TU}}, \quad \forall {{cs}} \in {\text{CST,}} $$
(117)
$$ {\text{FTP}}_{t,p}^{\text{U}} = {\text{FPU}}_{p}^{{ ( {\text{max)}}}} \quad \forall t \in {\text{TU}},\quad \forall p \in {\text{PU,}} $$
(118)
$$ {\text{FWW}}^{{({\text{out}}),{\text{U}}}} = {\text{FW}}^{(\hbox{max} )} . $$
(119)

The upper and lower bounds on temperatures of hot and cold streams entering and leaving cooling and heating stages are based on the maximum and minimum temperature within the WN knowing the temperatures of process units, treatment units, freshwater and wastewater stream discharged into the environment.

$$ {\text{TFW}}^{(\hbox{min} )} = \mathop {\hbox{min} }\limits_{{s \in {\text{SFW}}}} \left( {{\text{TFW}}_{s} } \right), $$
(120)
$$ {\text{TPU}}_{\text{in}}^{(\hbox{min} )} = \mathop {\hbox{min} }\limits_{{p \in {\text{PU}}}} \left( {{\text{TPU}}_{p}^{(in)} } \right), $$
(121)
$$ {\text{TPU}}_{\text{in}}^{(\hbox{max} )} = \mathop {\hbox{max} }\limits_{{p \in {\text{PU}}}} \left( {{\text{TPU}}_{p}^{{({\text{in}})}} } \right), $$
(122)
$$ {\text{TPU}}_{\text{out}}^{(\hbox{min} )} = \mathop {\hbox{min} }\limits_{{p \in {\text{PU}}}} \left( {{\text{TPU}}_{p}^{{({\text{out}})}} } \right), $$
(123)
$$ {\text{TPU}}_{\text{out}}^{(\hbox{max} )} = \mathop {\hbox{max} }\limits_{{p \in {\text{PU}}}} \left( {{\text{TPU}}_{p}^{{({\text{out}})}} } \right), $$
(124)
$$ T_{\text{w}}^{(\hbox{min} )} = \hbox{min} \left( {{\text{TFW}}^{(\hbox{min} )} ,\; {\text{TPU}}_{\text{in}}^{(\hbox{min} )} ,\;{\text{TPU}}_{\text{out}}^{(\hbox{min} )} ,\; {\text{TWW}}^{{({\text{out}})}} } \right), $$
(125)
$$ T_{\text{w}}^{(\hbox{max} )} = \hbox{max} \left( {{\text{TPU}}_{\text{in}}^{(\hbox{max} )} ,\; {\text{TPU}}_{\text{out}}^{(\hbox{max} )} } \right). $$
(126)

The identified minimum and maximum temperatures of water streams within the network are used as lower and upper bounds for hot and cold water streams as follows:

$$ {\text{THS}}_{{hs}}^{{({\text{in}}),{\text{L}}}} = T_{\text{w}}^{(\hbox{min} )} \quad \forall {{hs}} \in {\text{HST,}} $$
(127)
$$ {\text{THS}}_{{hs}}^{{({\text{in}}),{\text{U}}}} = T_{\text{w}}^{(\hbox{max} )} \quad \forall {{hs}} \in {\text{HST,}} $$
(128)
$$ {\text{THS}}_{{hs}}^{{({\text{out}}),{\text{L}}}} = T_{\text{w}}^{(\hbox{min} )} \quad \forall {{hs}} \in {\text{HST,}} $$
(129)
$$ {\text{THS}}_{{hs}}^{{({\text{out}}),{\text{U}}}} = T_{\text{w}}^{(\hbox{max} )} \quad \forall {{hs}} \in {\text{HST,}} $$
(130)
$$ {\text{TCS}}_{{cs}}^{{({\text{in}}),{\text{L}}}} = T_{\text{w}}^{(\hbox{min} )} \quad \forall {{cs}} \in {\text{CST,}} $$
(131)
$$ {\text{TCS}}_{{cs}}^{{({\text{in}}),{\text{U}}}} = T_{\text{w}}^{(\hbox{max} )} \quad \forall {{cs}} \in {\text{CST,}} $$
(132)
$$ {\text{TCS}}_{{cs}}^{{({\text{out}}),{\text{L}}}} = T_{\text{w}}^{(\hbox{min} )} \quad \forall {{cs}} \in {\text{CST,}} $$
(133)
$$ {\text{TCS}}_{{cs}}^{{({\text{out}}),{\text{U}}}} = T_{\text{w}}^{(\hbox{max} )} \quad \forall {{cs}} \in {\text{CST}} . $$
(134)

For the given concentration of the contaminant within freshwater streams and maximum inlet/outlet contaminant concentrations within the process units, upper and lower bounds can be identified for any given process water stream:

$$ {\text{xPU}}_{p,c}^{{({\text{in}}),{\text{U}}}} = {\text{xPU}}_{p,c}^{{({\text{in}},\hbox{max} )}} \quad \forall p \in {\text{PU}},\quad \forall {\text{c}} \in {\text{SC,}} $$
(135)
$$ {\text{xPU}}_{p,c}^{{({\text{out}}),{\text{U}}}} = {\text{xPU}}_{p,c}^{{({\text{out,max}})}} \quad \forall p \in {\text{PU}}, \quad \forall c \in {\text{SC,}} $$
(136)
$$ {\text{xPU}}_{p,c}^{{({\text{out}}),{\text{L}}}} = \frac{{{\text{LPU}}_{p,j} }}{{{\text{FPU}}_{p}^{\hbox{max} } }}\quad \forall p \in {\text{PU}}, \quad \forall c \in {\text{SC,}} $$
(137)
$$ {\text{xTU}}_{t,c}^{{({\text{in}}),{\text{U}}}} = \mathop {\hbox{max} }\limits_{{p \in {\text{PU}}}} \left( {{\text{xPU}}_{p,c}^{{({\text{out,max}})}} } \right)\quad \forall t \in {\text{TU}}, \quad \forall c \in {\text{SC,}} $$
(138)
$$ {\text{xTU}}_{t,c}^{{({\text{out}}),{\text{U}}}} = {\text{xTU}}_{t,c}^{{({\text{in}}),{\text{U}}}} \cdot \left( {1 - {\text{RR}}_{t,c} } \right)\quad \forall t \in {\text{TU}},\quad \forall c \in {\text{SC,}} $$
(139)
$$ {\text{xFHS}}_{{{{hs}},{{c}}}}^{\text{U}} = \mathop {\hbox{max} }\limits_{{p \in {\text{PU}}}} \left( {{\text{xPU}}_{p,c}^{{({\text{out}},\hbox{max} )}} } \right)\quad \forall {{hs}} \in {\text{HST}},\quad \forall c \in {\text{SC,}} $$
(140)
$$ {\text{xFHS}}_{{{{hs}},{{c}}}}^{\text{L}} = \mathop {\hbox{min} }\limits_{{s \in {\text{SFW}}}} \left( {{\text{xFW}}_{s,c} } \right)\quad \forall {{hs}} \in {\text{HST}}, \quad \forall c \in {\text{SC,}} $$
(141)
$$ {\text{xFCS}}_{{{{cs}},{{c}}}}^{\text{U}} = \mathop {\hbox{max} }\limits_{{p \in {\text{PU}}}} \left( {{\text{xPU}}_{p,c}^{{({\text{out}},\hbox{max} )}} } \right)\quad \forall {{cs}} \in {\text{CST}},\quad \forall c \in {\text{SC,}} $$
(142)
$$ {\text{xFHS}}_{{{{cs}},{{c}}}}^{\text{L}} = \mathop {\hbox{min} }\limits_{{s \in {\text{SFW}}}} \left( {{\text{xFW}}_{s,c} } \right)\quad \forall {{cs}} \in {\text{CST}}, \quad \forall c \in {\text{SC,}} $$
(143)
$$ {\text{xWW}}_{c}^{{({\text{out}})}} = {\text{xWW}}_{c}^{{({\text{out}}),\hbox{max} }} \quad \forall {{c}} \in {\text{CS}},\quad |{\text{TU}}| > 0, $$
(144)
$$ {\text{xWW}}_{c}^{{({\text{out}})}} = \mathop {\hbox{max} }\limits_{{p \in {\text{PU}}}} \left( {{\text{xPU}}_{p,c}^{{({\text{out,max}})}} } \right)\quad \forall {{c}} \in {\text{CS}}, \quad |{\text{TU}}| = 0. $$
(145)

Variables bounds for the models M2 and M3

Upper and lower bounds for the heat integration (M2) and HEN synthesis (M3) models are defined in the following section. The upper bound for heat load required for cooling of hot stream i [Eq. (146)] and heating of cold stream j [Eq. (147)] can be calculated based on the upper bounds for the heat capacity flow rate and upper/lower bound for hot stream i and cold stream j temperatures as given by Eqs. (148)–(157)

$$ {\text{ech}}_{i}^{\text{U}} = {{fh}}_{i}^{\text{U}} \cdot \left( {{\text{thin}}_{i}^{\text{U}} - {\text{thout}}_{i}^{\text{L}} } \right)\quad \forall i \in {\text{HP,}} $$
(146)
$$ {\text{ecc}}_{j}^{\text{U}} = {{fc}}_{j}^{\text{U}} \cdot \left( {{\text{tcout}}_{j}^{\text{U}} - {\text{tcin}}_{j}^{\text{L}} } \right)\quad \forall j \in {\text{CP,}} $$
(147)
$$ {{fh}}_{i}^{\text{U}} = {\text{FHS}}_{{hs}}^{\text{U}} \quad i \in {\text{HP}}, \quad {{hs}} \in {\text{HST}},\quad i = {{hs,}} $$
(148)
$$ {{fc}}_{j}^{\text{U}} = {\text{FCS}}_{{cs}}^{\text{U}} \quad j \in {\text{CP}},\quad {{cs}} \in {\text{CST}},\quad j = {{cs,}} $$
(149)
$$ {\text{thin}}_{i}^{\text{U}} = {\text{THS}}_{{hs}}^{{ ( {\text{in),U}}}} \quad i \in {\text{HP}},\quad {{hs}} \in {\text{HST}},\quad i = {{hs}}, $$
(150)
$$ {\text{thin}}_{i}^{\text{L}} = {\text{THS}}_{{hs}}^{{ ( {\text{in),L}}}} \quad i \in {\text{HP}},\quad {{hs}} \in {\text{HST}},\quad i = {{hs,}} $$
(151)
$$ {\text{thout}}_{i}^{\text{U}} = {\text{THS}}_{{hs}}^{{ ( {\text{out),U}}}} \quad i \in {\text{HP}},\quad {{hs}} \in {\text{HST}},\quad i = {{hs,}} $$
(152)
$$ {\text{thout}}_{i}^{\text{L}} = {\text{THS}}_{{hs}}^{{ ( {\text{out),L}}}} \quad i \in {\text{HP}},\quad {{hs}} \in {\text{HST}},\quad i = {{hs,}} $$
(153)
$$ {\text{tcin}}_{j}^{\text{U}} = {\text{TCS}}_{{cs}}^{{ ( {\text{in),U}}}} \quad j \in {\text{CP}},\quad {{cs}} \in {\text{CST}},\quad j = {{cs,}} $$
(154)
$$ {\text{tcin}}_{j}^{\text{L}} = {\text{TCS}}_{{cs}}^{{ ( {\text{in),L}}}} \quad j \in {\text{CP}},\quad {{cs}} \in {\text{CST}},\quad j = {{cs,}} $$
(155)
$$ {\text{tcout}}_{j}^{\text{U}} = {\text{TCS}}_{{cs}}^{{ ( {\text{out),U}}}} \quad j \in {\text{CP}},\quad {{cs}} \in {\text{CST}},\quad j = {{cs,}} $$
(156)
$$ {\text{tcout}}_{j}^{\text{L}} = {\text{TCS}}_{{cs}}^{{ ( {\text{out),L}}}} \quad j \in {\text{CP}},\quad {{cs}} \in {\text{CST}},\quad j = {{cs}} . $$
(157)

The minimum approach temperatures and upper/lower bounds for temperatures of the streams across the temperature interval k are defined as follows:

$$ \Delta t_{i,j,k} \ge {\text{EMAT}}\quad \forall i \in {\text{HP}},\quad \forall j \in {\text{CP}},\quad \forall k \in {\text{ST}} $$
(158)
$$ \Delta {\text{thu}}_{j} \ge {\text{EMAT}}\quad \forall j \in {\text{CP,}} $$
(159)
$$ \Delta {\text{tcu}}_{i} \ge {\text{EMAT}}\quad \forall i \in {\text{HP,}} $$
(160)
$$ {\text{th}}_{i,k}^{\text{U}} = {\text{thin}}_{i}^{\text{U}} \quad i \in {\text{HP}},\quad k \in {\text{ST,}} $$
(161)
$$ {\text{th}}_{i,k}^{\text{U}} = {\text{thout}}_{i}^{\text{U}} \quad i \in {\text{HP}},\quad k \in {\text{ST,}} $$
(162)
$$ {\text{tc}}_{j,k}^{\text{U}} = {\text{tcout}}_{j}^{\text{U}} \quad j \in {\text{CP}},\quad k \in {\text{ST,}} $$
(163)
$$ {\text{tc}}_{j,k}^{\text{L}} = {\text{tcin}}_{j}^{\text{L}} \quad j \in {\text{CP}},\quad k \in {\text{ST}} . $$
(164)

The upper bound for driving forces is set to Γ = \( T_{\text{w}}^{(\hbox{max} )} . \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ibrić, N., Ahmetović, E. & Kravanja, Z. Mathematical programming synthesis of non-isothermal water networks by using a compact/reduced superstructure and an MINLP model. Clean Techn Environ Policy 18, 1779–1813 (2016). https://doi.org/10.1007/s10098-016-1152-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10098-016-1152-9

Keywords

Navigation