Skip to main content

Advertisement

Log in

Water-energy nexus: matching sources and uses

  • Perspective
  • Published:
Clean Technologies and Environmental Policy Aims and scope Submit manuscript

An Erratum to this article was published on 11 December 2014

Abstract

It is becoming increasingly clear that the issues of water and energy are inextricable with energy production becoming an increasingly large water consumer, and water being both a potential sink and source for energy. A complicating factor is the long-term impact of continued use of fossil fuel exacerbating global warming with attendant impact on water supplies. At the same time, the location of population relative to water and energy sources suggests that there is a need to choose those technologies for energy and water production, which produce an appropriate match between sources and population. These ideas are developed with respect to coastal populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

A :

Total membrane area

C f :

Initial feed water concentration

C mix :

Concentration of mixed seawater and feed water

C d :

Initial draw solution concentration

L p :

Intrinsic water permeability of RO or PRO membrane

R stack :

Resistance of electrodialysis stack

Voc:

Open circuit voltage

W max,m :

Maximum power generated per membrane area

\(\Delta \pi\) :

Osmotic pressure difference between feed and draw solution

\(\phi\) :

Fraction of feed water in total water volume fed to salinity gradient power generation

References

  • Atilhan S, Mahfouz A, Batchelor B, Linke P, Abdel-Wahab A, Nápoles-Rivera F, Jiménez-Gutiérrez A, El-Halwagi M (2012) A systems-integration approach to the optimization of macroscopic water desalination and distribution networks: a general framework applied to Qatar’s water resources. Clean Technol Environ Policy 14(2):161–171

    Article  Google Scholar 

  • Brauns E (2008) Towards a worldwide sustainable and simultaneous large-scale production of renewable energy and potable water through salinity gradient power by combining reversed electrodialysis and solar power? (Author abstract) (Report). Desalination 219(1–3):312

  • Brown A (2013) Facebook cools off. Nautilus Quarterly

  • Chung T-S, Zhang S, Wang KY, Su J, Ling MM (2012) Forward osmosis processes: yesterday, today and tomorrow. Desalination 287:78–81

    Article  CAS  Google Scholar 

  • Cox S (2012) Cooling a warming planet: a global air conditioning surge. E360

  • Daniilidis A, Herber R, Vermaas DA (2014) Upscale potential and financial feasibility of a reverse electrodialysis power plant. Appl Energy 119:257–265

    Article  Google Scholar 

  • Delgado A (2008) Water footprint of electric power generation: modelling its use and analyzing options for a water-scarce future. M.Sc. Thesis, MIT

  • Dlugolecki P, Gambier A, Nijmeijer K, Wessling M (2009) Practical potential of reverse electrodialysis as process for sustainable energy generation. Environ Sci Technol 43:6888–6894

    Article  CAS  Google Scholar 

  • Elimelech M, Phillip WA (2011) The future of seawater desalination: energy, technology, and the environment. Science 333(6043):712–717

    Article  CAS  Google Scholar 

  • Elliston B, MacGill I, Diesendorf M (2013) Least cost 100% renewable electricity scenarios in the Australian national electricity market. Energy Policy 59:270–282

    Article  Google Scholar 

  • Feinberg BJ, Ramon GZ, Hoek EMV (2013a) Reducing energy costs at a seawater RO Plant using coupled salinity gradient power. Paper presented at the international desalination association world congress on desalination and water reuse 2013, Tianjin, China

  • Feinberg BJ, Ramon GZ, Hoek EMV (2013b) Thermodynamic analysis of osmotic energy recovery at a reverse osmosis desalination plant. Environ Sci Technol 47(6):2982–2989

    Article  CAS  Google Scholar 

  • Ghaffour N, Missimer TM, Amy GL (2013) Technical review and evaluation of the economics of water desalination: current and future challenges for better water supply sustainability. Desalination 309:197–207

    Article  CAS  Google Scholar 

  • Guler E, Elizen R, Vermaas DA, Saakes M, Nijmeijer K (2013) Performance-determining membrane properties in reverse electrodialysis. J Membr Sci 466:266–276

    Article  Google Scholar 

  • Hancock NT, Black ND, Cath T (2012) A comparative life cycle assessment of hybrid osmotic dilution desalination and established seawater desalination and wastewater reclamation processes. Water Res 46:1145–1154

    Article  CAS  Google Scholar 

  • Henmi M, Kimura M, Sasaki T, Kurihara M (2013) Low pressure reverse osmosis membrane for seawater desalination in mega-ton water system. Paper presented at the international desalination association world congress on desalination and water reuse 2013, Tianjin, China

  • Hufenbach W, Böhm R, Blazejewski W, Kroll L, Czulak A (2005) Manufacture, design and testing of piping elements from braided composites. Chem Eng Technol 28(7):808

    Article  CAS  Google Scholar 

  • IPCC (2007) Climate change 2007: working group II: impacts adaptation and vulnerability. Intergovernmental panel on climate change

  • Jia Z, Wang B, Song S, Fan Y (2014) Blue energy: current technologies for sustainable power generation from water salinity gradient. Renew Sustain Energy Rev 31:91–100

    Article  Google Scholar 

  • Li W, Krantz WB, Cornelissen ER, Post JW, Verliefde ARD, Tang CY (2013) A novel hybrid process of reverse electrodialysis and reverse osmosis for low energy seawater desalination and brine management. Appl Energy 104:592–602

    Article  CAS  Google Scholar 

  • Liberman B (2010) Simultaneous power recovery of gauge and osmotic pressure from brine of SWRO desalination plants. Desalin Water Treat 15(1–3):249–255

  • Liberman B (2012) Reciprocal enhancement of reverse osmosis and forward osmosis. I. D. E. T. Ltd. EP 10803642

  • Liberman B, Greenberg G, Levitin V, Oz-Ari T, U. Tirosh (2013) Three pressure retarded osmosis (PRO) processes. Paper presented at the international desalination association world congress on desalination and water reuse 2013, Tianjin, China, International Desalination Association

  • Logan BE, Elimelech M (2012) Membrane-based processes for sustainable power generation using water. Nature 488(7411):313–319

    Article  CAS  Google Scholar 

  • Marvel K, Bonfils C (2013) Identifying external influences on global precipitation. Proc Nat Acad Sci 110(48):19301–19306

    Article  CAS  Google Scholar 

  • MFA http://www.mfa.gov.il/mfa/aboutisrael/land/pages/the%20land-%20geography%20and%20climate.aspx

  • Mertiny P, Ellyin F (2006) Joining of fiber-reinforced polymer tubes for high-pressure applications. Polym Compos 27(1):99–109

    Article  CAS  Google Scholar 

  • Messalem R, Kedem O, Linder C (2010) Apparatus and system for deionization. Google Patents

  • Mielke E, Anadon LD, Narayanamuri V (2010) Water consumption of energy resource extraction, processing, and conversion. Harvard Kennedy School, Cambridge (energy technology innovation policy discussion paper series)

    Google Scholar 

  • Ng KC, Thu K, Kim Y, Chakraborty A, Amy G (2013) Adsorption desalination: an emerging low-cost thermal desalination method. Desalination 308:161–179

    Article  CAS  Google Scholar 

  • Post JW, Veerman J, Hamelers HVM, Euverink GJW, Metz SJ, Nymeijer K, Buisman CJN (2007) Salinity-gradient power: evaluation of pressure-retarded osmosis and reverse electrodialysis. J Membr Sci 288(1–2):218–230

    Article  CAS  Google Scholar 

  • Post JW, Goetling CH, Valk J, Golinga S, Veerman J, Hamelers HVM, Hack PJFM (2010) Towards implementation of reverse electrodialysis for power generation from salinity gradients. Desalin Water Treat 16(1–3):182–193

  • Satija N (2014) Report: water availability a risk for oil, gas drillers. Texas Tribune

  • Skilhagen SE, Dugstad JE, Aaberg RJ (2008) Osmotic power—power production based on the osmotic pressure difference between waters with varying salt gradients. Desalination 220(1–3):476–482

    Article  CAS  Google Scholar 

  • Straub AP, Yip NY, Elimelech M (2013) Raising the bar: increased hydraulic pressure allows unprecedented high power densities in pressure-retarded osmosis. Environ Sci Technol Lett 1(1):55–59

  • Su J, Zhang S, Ling M, Chung T-S (2012) Forward osmosis: an emerging technology for sustainable supply of clean water. Clean Technol Environ Policy 14(4):507–511

    Article  CAS  Google Scholar 

  • Sugiyama M, Nicholls RJ, Vafeidis A (2008) Estimating the economic cost of sea-level rise. Global change—science and policy. MIT report 156, p 46

  • Thorsen T, Holt T (2009) The potential for power production from salinity gradients by pressure retarded osmosis. J Membr Sci 335(1–2):103–110

    Article  CAS  Google Scholar 

  • Turek M, Dydo P (2008) Comprehensive utilization of brackish water in ED–thermal system. Desalination 221(1–3):455–461

    Article  CAS  Google Scholar 

  • Vermaas DA, Saakes M, Nijmeijer K (2011a) Doubled power density from salinity gradients at reduced intermembrane distance. Environ Sci Technol 45(16):7089–7095

    Article  CAS  Google Scholar 

  • Vermaas DA, Saakes M, Nijmeijer K (2011b) Power generation using profiled membranes in reverse electrodialysis. J Membr Sci 385(1–2):234–242

    Article  Google Scholar 

  • Vermaas DA, Guler E, Saakes M, Nijmeijer K (2012) Theoretical power density from salinity gradients using reverse electrodialysis. Energy Procedia 20:170–184

    Article  CAS  Google Scholar 

  • Vermaas DA, Veerman J, Yip NY, Elimelech M, Saakes M, Nijmeijer K (2013) High efficiency in energy generation from salinity gradients with reverse electrodialysis. ACS Sustain Chem Eng 1(10):1295–1302

    Article  CAS  Google Scholar 

  • World Bank. http://wdi.worldbank.org/table/5.11

  • Yip NY, Elimelech M (2011) Performance limiting effects in power generation from salinity gradients by pressure retarded osmosis. Environ Sci Technol 45(23):10273–10282

    Article  CAS  Google Scholar 

  • Yip NY, Elimelech M (2012) Thermodynamic and energy efficiency analysis of power generation from natural salinity gradients by pressure retarded osmosis. Environ Sci Technol 46(9):5230–5239

    Article  CAS  Google Scholar 

  • Yip NY, Tiraferri A, Phillip WA, Schiffman JD, Hoover LA, Kim YC, Elimelech M (2011) Thin-film composite pressure retarded osmosis membranes for sustainable power generation from salinity gradients. Environ Sci Technol 45(10):4360–4369

    Article  CAS  Google Scholar 

  • Zhao S, Zou L, Tang CY, Mulcahy D (2012) Recent developments in forward osmosis: opportunities and challenges. J Membr Sci 396:1–21

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Gilron.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gilron, J. Water-energy nexus: matching sources and uses. Clean Techn Environ Policy 16, 1471–1479 (2014). https://doi.org/10.1007/s10098-014-0853-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10098-014-0853-1

Keywords

Navigation