Skip to main content
Log in

Waste treatment: an environmental, economic and social analysis with a new group fuzzy PROMETHEE approach

  • Original Paper
  • Published:
Clean Technologies and Environmental Policy Aims and scope Submit manuscript

Abstract

Most complex decisions involve several stakeholders and therefore need to be solved using a group multi-criteria decision method. However, stakeholders or decision-makers often have divergent views, especially in the environmental sector. In order to integrate this divergence, a new group fuzzy PROMETHEE approach is introduced to combine the traditional environmental criteria of life cycle assessments with social and economic criteria. The modelling of uncertainty within the group of decision-makers using a fuzzy approach makes this method unique. The proposed fuzzy approach differs significantly from the standard one. The decision-makers express their judgments in crisp forms. In order to take into account the intrinsic dispersion of judgments within the group, a posteriori fuzzification procedure is applied. The crisp values are not simply aggregated; they are converted into a triangular fuzzy number based on the given evaluations. As a consequence, the definition of fuzzy membership functions, as required in standard fuzzy logic, is not required, which simplifies the process and makes it more reliable. The new approach is illustrated with a real case study concerning the selection of the best waste treatment solution in a natural park from among a traditional incinerator and an innovative integrated plant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

I :

Number of alternatives

M :

Number of decision-makers

J :

Number of leave criteria

R :

Number of criteria

J O :

Set of quantitative (i.e. objective) leave criteria

J S :

Set of qualitative (i.e. subjective) leave criteria

J :

Set of leave criteria where \( J = J^{\text{O}} \cup J^{\text{S}} \), with \( J^{\text{O}} \cap J^{\text{S}} = \emptyset \)

a i :

Alternative, where \( i = 1, \ldots ,I \)

d m :

Decision-maker, where \( m = 1, \ldots ,M \)

c j :

Leave criterion, where \( j = 1, \ldots ,J \)

l j :

Level of c j in the hierarchy, where \( j = 1, \ldots ,J \)

c r :

Criterion, where \( r = 1, \ldots ,R \)

\( \Gamma\left( {c_{r} } \right) \) :

\( \left\{ {{\text{sub - criteria of}} c_{r} } \right\} \), where r = 1,…,R

w m,r :

Weight assigned to c r by d m , where \( r = 1, \ldots ,R \) and \( m = 1, \ldots ,M \)

w m,j :

Weight assigned to c j by d m , where \( j = 1, \ldots ,J \) and \( m = 1, \ldots ,M \)

x i,j :

Value of alternative a i for the criterion c j , where \( i = 1, \ldots ,I \) and \({c_{j}} {\in} {J^{\text{O}}}\)

x i,m,j :

Value of alternative a i for the criterion c j given by decision-maker d m , where \( i = 1, \ldots ,I \), \( c_{j} \in J^{\text{S}} \), and \( m = 1, \ldots ,M \)

References

  • Achillas C, Moussiopoulos N, Karagiannidis A et al (2013) The use of multi-criteria decision analysis to tackle waste management problems: a literature review. Waste Manag Res 31:115–129. doi:10.1177/0734242X12470203

    Article  Google Scholar 

  • Boesch ME, Vadenbo C, Saner D et al (2014) An LCA model for waste incineration enhanced with new technologies for metal recovery and application to the case of Switzerland. Waste Manag 34:378–389. doi:10.1016/j.wasman.2013.10.019

    Article  CAS  Google Scholar 

  • Brans JP (1982) L’ingénierie de la décision: elaboration d’instruments d’aide à la décision. In: Nadeaeu R, Landry M (eds) L'aide à la décision: nature, instruments et perspectives d’avenir. Presse de l'Université de Laval, Québec, pp 183–213

  • Brans JP, Vincke P (1985) A Preference Ranking Organisation Method: (The PROMETHEE Method for Multiple Criteria Decision-Making). Manag Sci 31:647–656. doi:10.1287/mnsc.31.6.647

    Article  Google Scholar 

  • Chhipi-Shrestha GK, Hewage K, Sadiq R (2015) “Socializing” sustainability: a critical review on current development status of social life cycle impact assessment method. Clean Technol Environ Policy 17:579–596. doi:10.1007/s10098-014-0841-5

    Article  Google Scholar 

  • Cole RJ, Sterner E (2000) Reconciling theory and practice of life-cycle costing. Build Res Inf 28:368–375. doi:10.1080/096132100418519

    Article  Google Scholar 

  • Di Gianfilippo M, Costa G, Pantini S et al (2015) LCA of management strategies for RDF incineration and gasification bottom ash based on experimental leaching data. Waste Manag. doi:10.1016/j.wasman.2015.05.032

    Google Scholar 

  • Dorini G, Kapelan Z, Azapagic A (2011) Managing uncertainty in multiple-criteria decision making related to sustainability assessment. Clean Technol Environ Policy 13:133–139. doi:10.1007/s10098-010-0291-7

    Article  Google Scholar 

  • El Hanandeh A, El-Zein A (2010) The development and application of multi-criteria decision-making tool with consideration of uncertainty: the selection of a management strategy for the bio-degradable fraction in the municipal solid waste. Bioresour Technol 101:555–561. doi:10.1016/j.biortech.2009.08.048

    Article  Google Scholar 

  • Erses Yay AS (2015) Application of life cycle assessment (LCA) for municipal solid waste management: a case study of Sakarya. J Clean Prod 94:284–293. doi:10.1016/j.jclepro.2015.01.089

    Article  CAS  Google Scholar 

  • EUR 23021 EN - Joint Research Centre - Institute for Environment and Sustainability (2007) Environmental assessment of municipal waste management scenarios: Part I—Data collection and preliminary environmental assessments for life cycle thinking pilot studies

  • EUR 23021 EN/2 - Joint Research Centre - Institute for Environment and Sustainability (2007) Environmental assessment of municipal waste management scenarios: Part II—Detailed Life Cycle Assessments

  • Fiksel J, Bruins R, Gatchett A et al (2014) The triple value model: a systems approach to sustainable solutions. Clean Technol Environ Policy 16:691–702. doi:10.1007/s10098-013-0696-1

    Google Scholar 

  • Gamberini R, Gebennini E, Grassi A, Mora C (2008) An innovative model for WEEE recovery network management in accordance with EU directives. Int J Environ Technol Manag 8:348–368. doi:10.1504/IJETM.2008.017507

    Article  Google Scholar 

  • Gamberini R, Gebennini E, Rimini B (2009) An innovative container for WEEE collection and transport: details and effects following the adoption. Waste Manag 29:2846–2858. doi:10.1016/j.wasman.2009.07.006

    Article  Google Scholar 

  • Gamberini R, Del Buono D, Lolli F, Rimini B (2013a) Municipal solid waste management: identification and analysis of engineering indexes representing demand and costs generated in virtuous Italian communities. Waste Manag 33:2532–2540. doi:10.1016/j.wasman.2013.06.003

    Article  CAS  Google Scholar 

  • Gamberini R, Rimini B, Nicandri P (2013b) Composting of municipal solid waste: an empirical analysis of existing plants. Trans ASABE 56:1887–1893. doi:10.13031/trans.56.9819

    Google Scholar 

  • Hauschild MZ, Dreyer LC, Jørgensen A (2008) Assessing social impacts in a life cycle perspective-Lessons learned. CIRP Ann: Manuf Technol 57:21–24. doi:10.1016/j.cirp.2008.03.002

    Article  Google Scholar 

  • Herva M, Roca E (2013) Review of combined approaches and multi-criteria analysis for corporate environmental evaluation. J Clean Prod 39:355–371. doi:10.1016/j.jclepro.2012.07.058

    Article  Google Scholar 

  • Hwang CL, Yoon K (1981) Multiple attribute decision making methods and applications: a state-of-the-art survey. Springer, New York

    Book  Google Scholar 

  • International Standard ISO 14040 (2006) Environmental Management—Life Cycle Assessment—Principles and Framework. International Organization for Standardization, Geneva

  • Ishizaka A, Nemery P (2011) Selecting the best statistical distribution with PROMETHEE and GAIA. Comput Ind Eng 61:958–969. doi:10.1016/j.cie.2011.06.008

    Article  Google Scholar 

  • Ishizaka A, Nguyen NH (2013) Calibrated fuzzy AHP for current bank account selection. Expert Syst Appl 40:3775–3783. doi:10.1016/j.eswa.2012.12.089

    Article  Google Scholar 

  • Jolliet O, Margni M, Charles R et al (2003) IMPACT 2002+: a new life cycle impact assessment methodology. Int J Life Cycle Assess 8:324–330. doi:10.1007/BF02978505

    Article  Google Scholar 

  • Klöpffer W (2008) Life cycle sustainability assessment of products (with comments by Helias A. Udo de Haes, p. 95). Int J Life Cycle Assess 13:89–95. doi:10.1065/lca2008.02.376

    Article  Google Scholar 

  • Kumar PR, Jayaram A, Somashekar RK (2009) Assessment of the performance of different compost models to manage urban household organic solid wastes. Clean Technol Environ Policy 11:473–484. doi:10.1007/s10098-009-0204-9

    Article  CAS  Google Scholar 

  • Laurent A, Bakas I, Clavreul J et al (2014a) Review of LCA studies of solid waste management systems—Part I: lessons learned and perspectives. Waste Manag 34:573–588. doi:10.1016/j.wasman.2013.10.045

    Article  Google Scholar 

  • Laurent A, Clavreul J, Bernstad A et al (2014b) Review of LCA studies of solid waste management systems—Part II: methodological guidance for a better practice. Waste Manag 34:589–606. doi:10.1016/j.wasman.2013.12.004

    Article  Google Scholar 

  • Liu H, You J, Lu C, Chen Y (2015) Evaluating health-care waste treatment technologies using a hybrid multi-criteria decision making model. Renew Sustain Energy Rev 41:932–942. doi:10.1016/j.rser.2014.08.061

    Article  Google Scholar 

  • Mardani A, Jusoh A, Zavadskas EK (2015) Fuzzy multiple criteria decision-making techniques and applications—Two decades review from 1994 to 2014. Expert Syst Appl 42:4126–4148. doi:10.1016/j.eswa.2015.01.003

    Article  Google Scholar 

  • Margallo M, Aldaco R, Irabien Á (2014) Environmental management of bottom ash from municipal solid waste incineration based on a life cycle assessment approach. Clean Technol Environ Policy 16:1319–1328. doi:10.1007/s10098-014-0761-4

    Article  CAS  Google Scholar 

  • Margallo M, Taddei MBM, Hernández-Pellón A et al (2015) Environmental sustainability assessment of the management of municipal solid waste incineration residues: a review of the current situation. Clean Technol Environ Policy. doi:10.1007/s10098-015-0961-6

    Google Scholar 

  • Milani M, Montorsi L, Stefani M (2014) An integrated approach to energy recovery from biomass and waste: anaerobic digestion-gasification-water treatment. Waste Manag Res 32:614–625. doi:10.1177/0734242X14538307

    Article  CAS  Google Scholar 

  • Morrissey AJ, Browne J (2004) Waste management models and their application to sustainable waste management. Waste Manag 24:297–308. doi:10.1016/j.wasman.2003.09.005

    Article  CAS  Google Scholar 

  • Norris G (2001) Integrating life cycle cost analysis and LCA. Int J Life Cycle Assess 6:118–120. doi:10.1007/BF02977849

    Google Scholar 

  • Ordoobadi S (2009) Development of a supplier selection model using fuzzy logic. Supply Chain Manag: Int J 14:314–327

  • Quirós R, Gabarrell X, Villalba G et al (2014) The application of LCA to alternative methods for treating the organic fiber produced from autoclaving unsorted municipal solid waste: case study of Catalonia. J Clean Prod. doi:10.1016/j.jclepro.2014.04.018

    Google Scholar 

  • Rebitzer G, Hunkeler D (2003) Life cycle costing in LCM: ambitions, opportunities, and limitations. discussing a framework. Int J Life Cycle Assess 8:253–256

    Article  Google Scholar 

  • Saaty T (1980) The analytic hierarchy process. McGraw Hill, New York

    Google Scholar 

  • Sikdar SK (2007) Sustainability and recycle-reuse in process systems. Clean Technol Environ Policy 9:167–174. doi:10.1007/s10098-007-0087-6

    Article  CAS  Google Scholar 

  • Soltani A, Hewage K, Reza B, Sadiq R (2015) Multiple stakeholders in multi-criteria decision-making in the context of municipal solid waste management: a review. Waste Manag 1:318–328. doi:10.1016/j.wasman.2014.09.010

    Article  Google Scholar 

  • Swiss Centre for Life Cycle Inventories (2009) Ecoinvent database V2.1. Dübendorf, Switzerland. www.ecoinvent.org

  • Tan RR (2005) Application of symmetric fuzzy linear programming in life cycle assessment. Environ Model Softw 20:1343–1346. doi:10.1016/j.envsoft.2004.11.014

    Article  Google Scholar 

  • Tan RR (2008) Using fuzzy numbers to propagate uncertainty in matrix-based LCI. Int J Life Cycle Assess 13:585–592. doi:10.1007/s11367-008-0032-x

    Article  Google Scholar 

  • Tan RR, Culaba AB, Purvis MRI (2002) Application of possibility theory in the life-cycle inventory assessment of biofuels. Int J Energy Res 26:737–745. doi:10.1002/er.812

    Article  CAS  Google Scholar 

  • Tan RR, Culaba AB, Purvis MRI (2004) POLCAGE 1.0—a possibilistic life-cycle assessment model for evaluating alternative transportation fuels. Environ Model Softw 19:907–918. doi:10.1016/j.envsoft.2003.10.004

    Article  Google Scholar 

  • Tan RR, Culaba AB, Aviso KB (2008) A fuzzy linear programming extension of the general matrix-based life cycle model. J Clean Prod 16:1358–1367. doi:10.1016/j.jclepro.2007.06.020

    Article  Google Scholar 

  • UNEP/SETAC (2009) Guidelines for social life cycle assessment of products. UNEP/SETAC Life Cycle Initiative, Druk in de weer

  • UNEP/SETAC (2011) Towards a life cycle sustainability assessment: making informed choices on products. UNEP/SETAC Life Cycle Initiative, Paris

  • UNEP/SETAC (2013) The methodological sheets for subcategories in social life cycle assessment (S-LCA): pre-publication version. UNEP/SETAC Life Cycle Initiative, Paris

  • Vázquez-Rowe I, Golkowska K, Lebuf V et al (2015) Environmental assessment of digestate treatment technologies using LCA methodology. Waste Manag. doi:10.1016/j.wasman.2015.05.007

    Google Scholar 

  • Vinodh S (2011) Assessment of sustainability using multi-grade fuzzy approach. Clean Technol Environ Policy 13:509–515. doi:10.1007/s10098-010-0333-1

    Article  Google Scholar 

  • Zadeh LA (1965) Fuzzy sets. Inf Control 8:338–353. doi:10.1016/S0019-9958(65)90241-X

    Article  Google Scholar 

Download references

Acknowledgments

This research was partly funded by the EU as part of the project LIFE08 ENV/IT/000388 RELS—Innovative chain for energy recovery from waste in natural parks (for more details see www.life-rels.eu).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessio Ishizaka.

Appendix

Appendix

See Table 8

Table 8 The fuzzy decision matrix

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lolli, F., Ishizaka, A., Gamberini, R. et al. Waste treatment: an environmental, economic and social analysis with a new group fuzzy PROMETHEE approach. Clean Techn Environ Policy 18, 1317–1332 (2016). https://doi.org/10.1007/s10098-015-1087-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10098-015-1087-6

Keywords

Navigation