Skip to main content
Log in

A \(C^1\)\(C^0\) virtual element discretization for a sixth-order elliptic equation

  • Published:
Calcolo Aims and scope Submit manuscript

Abstract

In this paper we study a virtual element method for the sixth-order elliptic problem with clamped and simply supported boundary conditions type. Using arguments like Ciarlet-Raviart method we introduce an auxiliary unknown \(w:=\Delta u\) and we propose a weak formulation on \(H^2\times H^1\) Sobolev space. A \(C^1\times C^0\) virtual element discretization is proposed to approximate the solutions of the weak formulation. We also provide the convergence and error estimates results. Finally, several numerical examples illustrating the performance of the virtual element method are reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ahmad, B., Alsaedi, A., Brezzi, F., Marini, L.D., Russo, A.: Equivalent projectors for virtual element methods. Comput. Math. Appl. 66(3), 376–391 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  2. Antonietti, P.F., Beirão da Veiga, L., Scacchi, S., Verani, M.: A \(C^1\) virtual element method for the Cahn-Hilliard equation with polygonal meshes. SIAM J. Numer. Anal. 54(1), 34–56 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  3. Antonietti, P.F., Manzini, G., Scacchi, S., Verani, M.: A review on arbitrarily regular conforming virtual element methods for second- and higher-order elliptic partial differential equations. Math. Models Methods Appl. Sci. 31(14), 2825–2853 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  4. Antonietti, P.F., Manzini, G., Verani, M.: The conforming virtual element method for polyharmonic problems. Comput. Math. Appl. 79(7), 2021–2034 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  5. Backofen, R., Rätz, A., Voigt, A.: Nucleation and growth by a phase field crystal (pfc) model. Philos. Magaz. Lett. 87(11), 813–820 (2007)

    Article  Google Scholar 

  6. Barrett, J.W., Langdon, S., Nürnberg, R.: Finite element approximation of a sixth order nonlinear degenerate parabolic equation. Numer. Math. 96(3), 401–434 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Beirão da Veiga, L., Brezzi, F., Cangiani, A., Manzini, G., Marini, L.D., Russo, A.: Basic principles of virtual element methods. Math. Models Methods Appl. Sci. 23(1), 199–214 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Beirão da Veiga, L., Dassi, F., Russo, A.: A \(C^1\) virtual element method on polyhedral meshes. Comput. Math. Appl. 79(7), 1936–1955 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  9. Beirão da Veiga, L., Dassi, F., Vacca, G.: The Stokes complex for virtual elements in three dimensions. Math. Models Methods Appl. Sci. 30(3), 477–512 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  10. Beirão da Veiga, L., Dassi, F., Vacca, G.: Vorticity-stabilized virtual elements for the Oseen equation. Math. Models Methods Appl. Sci. 31(14), 3009–3052 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  11. Beirão da Veiga, L., Manzini, G.: A virtual element method with arbitrary regularity. IMA J. Numer. Anal. 34(2), 759–781 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Benson, A.S., Mayers, J.: General instability and face wrinkling of sandwich plates-unified theory and applications. AIAA J. 5(4), 729–739 (1967)

    Article  MATH  Google Scholar 

  13. Blum, H., Rannacher, R.: On the boundary value problem of the biharmonic operator on domains with angular corners. Math. Methods Appl. Sci. 2(4), 556–581 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  14. Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods. Springer, New York (2008)

    Book  MATH  Google Scholar 

  15. Brezis, H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer, New York (2011)

    Book  MATH  Google Scholar 

  16. Brezzi, F., Marini, L.D.: Virtual element methods for plate bending problems. Comput. Methods Appl. Mech. Eng. 253, 455–462 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Cao, S., Chen, L., Guo, R.: A virtual finite element method for two-dimensional Maxwell interface problems with a background unfitted mesh. Math. Models Methods Appl. Sci. 31(14), 2907–2936 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  18. Chang, S.-Y.A.: Conformal invariants and partial differential equations. Bull. Amer. Math. Soc. (N.S.) 42(3), 365–393 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  19. Cheng, M., Warren, J.A.: An efficient algorithm for solving the phase field crystal model. J. Comput. Phys. 227(12), 6241–6248 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Chinosi, C., Marini, L.D.: Virtual element method for fourth order problems: \(L^2\)-estimates. Comput. Math. Appl. 72(8), 1959–1967 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  21. Dassi, F., Mascotto, L.: Exploring high-order three dimensional virtual elements: bases and stabilizations. Comput. Math. Appl. 75(9), 3379–3401 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  22. Dassi, F., Vacca, G.: Bricks for the mixed high-order virtual element method: projectors and differential operators. Appl. Numer. Math. 155, 140–159 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  23. Dekanski, C.W.: Design and analysis of propeller blade geometry using the PDE method. Ph.D. Thesis, University of Leeds (1993)

  24. Droniou, J., Ilyas, M., Lamichhane, B.P., Wheeler, G.E.: A mixed finite element method for a sixth-order elliptic problem. IMA J. Numer. Anal. 39(1), 374–397 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  25. Gatica, G.N., Munar, M., Sequeira, F.A.: A mixed virtual element method for a nonlinear Brinkman model of porous media flow. Calcolo 55(2), 21, 36 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  26. Gatica, G.N., Munar, M., Sequeira, F.A.: A mixed virtual element method for the Navier-Stokes equations. Math. Models Methods Appl. Sci. 28(14), 2719–2762 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  27. Gazzola, F., Grunau, H.-C., Sweers, G.: Polyharmonic boundary value problems. Lecture Notes in Mathematics, vol. 1991. Springer-Verlag, Berlin (2010)

  28. Girault, V., Raviart, P.-A.: Finite Element Methods for Navier-Stokes Equations. Springer-Verlag, Berlin (1986)

    Book  MATH  Google Scholar 

  29. Grisvard, P.: Elliptic Problems in Non-Smooth Domains. Pitman, Boston (1985)

    MATH  Google Scholar 

  30. Gudi, T., Neilan, M.: An interior penalty method for a sixth-order elliptic equation. IMA J. Numer. Anal. 31(4), 1734–1753 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  31. Kubiesa, S., Ugail, H., Wilson, M.J.: Interactive design using higher order pdes. Vis. Comput. 20(10), 682–693 (2004)

    Article  Google Scholar 

  32. Liu, C.: A sixth-order thin film equation in two space dimensions. Adv. Differ. Equ. 20(5–6), 557–580 (2015)

    MathSciNet  MATH  Google Scholar 

  33. Liu, D., Xu, G.: A general sixth order geometric partial differential equation and its application in surface modeling. J. Inf. Comput. Sci. 4, 129–140 (2007)

    Google Scholar 

  34. Liu, X., Li, R., Chen, Z.: A virtual element method for the coupled Stokes-Darcy problem with the Beaver-Joseph-Saffman interface condition. Calcolo 56(4), 48, 28 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  35. Mora, D., Rivera, G., Rodríguez, R.: A virtual element method for the Steklov eigenvalue problem. Math. Models Methods Appl. Sci. 25(8), 1421–1445 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  36. Mora, D., Rivera, G., Velásquez, I.: A virtual element method for the vibration problem of Kirchhoff plates. ESAIM Math. Model. Numer. Anal. 52(4), 1437–1456 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  37. Savaré, G.: Regularity results for elliptic equations in Lipschitz domains. J. Funct. Anal. 152(1), 176–201 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  38. Tagliabue, A., Ded’e, L., Quarteroni, A.: Isogeometric analysis and error estimates for high order partial differential equations in fluid dynamics. Comput. Fluids 102, 277–303 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  39. Vacca, G.: An \(H^1\)-conforming virtual element for Darcy and Brinkman equations. Math. Models Methods Appl. Sci. 28(1), 159–194 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  40. Zhang, J.J., You, L.H.: Fast surface modelling using a 6th order pde. Comput. Graph. Forum 23(3), 311–320 (2004)

    Article  Google Scholar 

  41. Zhao, J., Zhang, B.: The curl-curl conforming virtual element method for the quad-curl problem. Math. Models Methods Appl. Sci. 31(8), 1659–1690 (2021)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iván Velásquez.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Causil, J., Reales, C. & Velásquez, I. A \(C^1\)\(C^0\) virtual element discretization for a sixth-order elliptic equation. Calcolo 59, 39 (2022). https://doi.org/10.1007/s10092-022-00482-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10092-022-00482-5

Keywords

Mathematics Subject Classification

Navigation