Skip to main content
Log in

A generalized Newton method for non-Hermitian positive definite linear complementarity problem

  • Published:
Calcolo Aims and scope Submit manuscript

Abstract

In this paper, based on the implicit fixed-point equation of the linear complementarity problem (LCP), a generalized Newton method is presented to solve the non-Hermitian positive definite linear complementarity problem. Some convergence properties of the proposed generalized Newton method are discussed. Numerical experiments are presented to illustrate the efficiency of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cottle, R.W., Dantzig, G.B.: Complementary pivot theory of mathematical programming. Linear Algebra Appl. 1, 103–125 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  2. Cottle, R.W., Pang, J.-S., Stone, R.E.: The Linear Complementarity Problem. Academic, San Diego (1992)

    MATH  Google Scholar 

  3. Murty, K.G.: Linear Complementarity, Linear and Nonlinear Programming. Heldermann, Berlin (1988)

    MATH  Google Scholar 

  4. Schäfer, U.: A linear complementarity problem with a P-matrix. SIAM Rev. 46, 189–201 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cryer, C.W.: The solution of a quadratic programming using systematic overrelaxation. SIAM J. Control. 9, 385–392 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ahn, B.H.: Solutions of nonsymmetric linear complementarity problems by iterative methods. J. Optim. Theory Appl. 33, 175–185 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  7. Mangasarian, O.L.: Solutions of symmetric linear complementarity problems by iterative methods. J. Optim. Theory Appl. 22, 465–485 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  8. Pang, J.-S.: Necessary and sufficient conditions for the convergence of iterative methods for the linear complementarity problem. J. Optim. Theory Appl. 42, 1–17 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  9. Tseng, P.: On linear convergence of iterative methods for the variational inequality problem. J. Comput. Appl. Math. 60, 237–252 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  10. Van Bokhoven, W.: Piecewise-linear Modelling and Analysis. Proefschrift, Eindhoven (1981)

    Google Scholar 

  11. Dong, J.-L., Jiang, M.-Q.: A modified modulus method for symmetric positive-definite linear complementarity problems. Numer. Linear Algebra Appl. 16, 129–143 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bai, Z.-Z.: Modulus-based matrix splitting iteration methods for linear complementarity problems. Numer. Linear Algebra Appl. 17, 917–933 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hadjidimos, A., Tzoumas, M.: Nonstationary extrapolated modulus algorithms for the solution of the linear complementarity problem. Linear Algebra Appl. 431, 197–210 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ortega, J.M., Rheinboldt, W.C.: Iterative solution of nonlinear equations in several variables. Academic Press, USA (1970)

    MATH  Google Scholar 

  15. Benzi, M.: A generalization of the Hermitian and skew-Hermitian splitting iteration. SIAM J. Matrix Anal. Appl. 31, 360–374 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Li, W.: A general modulus-based matrix splitting method for linear complementarity problems of \(H\)-matrices. Appl. Math. Lett. 26, 1159–1164 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Xu, W.-W., Liu, H.: A modified general modulus-based matrix splitting method for linear complementarity problems of \(H\)-matrices. Linear Algebra Appl. 458, 626–637 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hadjidimos, A., Lapidakis, M., Tzoumas, M.: On iterative solution for linear complementarity problem with an \(H\)-matrix. SIAM J. Matrix Anal. Appl. 33, 97–110 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Zhang, L.-L.: Two-step modulus-based matrix splitting iteration method for linear complementarity problems. Numer. Algor. 57, 83–99 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Zhang, L.-L., Ren, Z.-R.: Improved convergence theorems of modulus-based matrix splitting iteration methods for linear complementarity problems. Appl. Math. Lett. 26, 638–642 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. Zheng, N., Yin, J.-F.: Accelerated modulus-based matrix splitting iteration methods for linear complementarity problems. Numer. Algor. 64, 245–262 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Zheng, N., Yin, J.-F.: Convergence of accelerated modulus-based matrix splitting iteration methods for linear complementarity problem with an \(H_{+}\)-matrix. J. Comp. Appl. Math. 260, 281–293 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  23. Ahn, B.H.: Iterative methods for linear complementarity problems with upper-bounds on primary variables. Math. Program. 26, 295–315 (1983)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shi-Liang Wu.

Additional information

This research was supported by NSFC (No.11301009) and by Natural Science Foundations of Henan Province (No.15A110007).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, SL., Li, CX. A generalized Newton method for non-Hermitian positive definite linear complementarity problem. Calcolo 54, 43–56 (2017). https://doi.org/10.1007/s10092-016-0175-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10092-016-0175-2

Keywords

Mathematics Subject Classification

Navigation