Skip to main content
Log in

Spectral element discretization for the stream-function and vorticity formulation of the axisymmetric Stokes problem

  • Published:
Calcolo Aims and scope Submit manuscript

Abstract

We deal in this work with the Stokes equations set in a three-dimensional axisymmetric bounded domain. The boundary conditions that we consider are given on the normal component of the velocity and the tangential components of the vorticity. Under assumptions on the data of the problem, the three-dimensional problem is reduced to a two-dimensional one. We write a stream function–vorticity formulation for this problem with two scalar unknowns. For the discretization, we use a domain decomposition method: the spectral element method which is well-adapted here. We prove the well-posedness of the obtained formulations and we derive error estimates between the exact solution and the discrete one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abdellatif, N.: A mixed stream-function and vorticity formulation for axisymmetric Navier–Stokes equations. J. Comput. Appl. Math. 117, 61–83 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  2. Abdellatif, N.: Méthodes spectrales et d’éléments spectraux pour les équations de Navier–Stokes axisymétriques, PhD Thesis. Pierre and Marie Curie University, Paris (1997)

  3. Abdellatif, N., Bernardi, C.: A new formulation of the Stokes problem in a cylinder and its spectral discretization. ESAIM Math. Model. Numer. Anal. 38(05), 781–810 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. Abdellatif, N., Chorfi, N., Trabelsi, S.: Spectral discretization of the axisymmetric vorticity, velocity and pressure formulation of the Stokes problem. J. Sci. Comput. 47, 419–440 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Amara, M., Bernardi, C.: Convergence of a finite element discretization of the Navier–Stokes equations in vorticity and stream-function formulation. Math. Model. Numer. Anal. 33(5), 1033–1056 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  6. Amara, M., Chacon-Vera, E., Trujillo, D.: Vorticity–velocity–pressure formulation for the Stokes problem. Math. Comput. 73, 1673–1697 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Amara, M., Capatina-Papaghiuc, D., Chacon-Vera, E., Trujillo, D.: Vorticity–velocity–pressure formulation for Navier–Stokes equations. Comput. Vis. Sci. 6, 47–52 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  8. Amoura, K., Azaïez, M., Bernardi, C., Chorfi, N., Saadi, S.: Spectral element discretization of the vorticity, velocity and pressure formulation of the Navier–Stokes problem. Calcolo 44, 165–188 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Amrouche, C., Bernardi, C., Dauge, M., Girault, V.: Vector potentials in three-dimensionnal nonsmooth domains. Math. Meth. Appl. Sci. 21, 823–864 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  10. Azaïez, M., Bernardi, C., Dauge, M., Maday, Y.: Spectral Methods for Axisymmetric Domains. Gauthier-Villars & North-Holland, Paris, Amsterdam. Ser. Appl. Math. 3, (1999)

  11. Bernardi, C., Chorfi, N.: Spectral discretization of the vorticity, velocity and pressure formulation of the Stokes problem. SIAM J. Numer. Anal. 44(2), 826–850 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bègue, C., Conca, C., Murat, F., Pironneau, O.: Les équations de Stokes et de Navier–Stokes avec conditions aux limites sur la pression. In Nonlinear Partial Differential Equations and their applications, Coll‘ege de France Seminar, Ix, 179–264 (1988)

  13. Dubois, F.: Vorticity–velocity–pressure formulation for the Stokes problem. Math. Meth Appl. Sci. 25, 1091–1119 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  14. Dubois, F., Salaün, M., Salmon, S.: Vorticity–velocity–pressure and stream function–vorticity formulations for the Stokes problem. J. Math. Pures Appl. 82, 1395–1451 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  15. Girault, V.: Incompressible Finite Element Methods for the Navier–Stokes Equations, Theory and Algorithms. Springer, Berlin (1986)

    Book  MATH  Google Scholar 

  16. Girault, V., Raviart, P.-A.: Finite Element Methods for the Navier–Stokes Equations, Theory and Algorithms. Springer, Berlin (1986)

    Book  MATH  Google Scholar 

  17. Halpern, L.: Spectral methods in polar coordinates for the Stokes problem. Application to computation in unbounded domains. Math. Comput. 65, 507–531 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  18. Touihri, M.: Méthodes spectrales pour le problème de Stokes à densité variable, Internal report R98020, LJLL, Pierre and Marie Curie University, Paris (1998)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nahla Abdellatif.

Appendix 1

Appendix 1

We give the proof of the approximation properties of the discrete operators \(\mathscr {R}_N^0, \mathscr {R}_N^1\) and \(\mathscr {R}_N^{1,0}\).

Lemma 5.1

For any function \(\theta \in L^2_1(\Omega )\),

$$\begin{aligned} \Vert \theta -\mathscr {R}_N^0\theta \Vert _{L^2_1(\Omega )}\le 2 \Vert \theta -\theta _{N-1}\Vert _{L^2_1(\Omega )},\forall \theta _{N-1}\in \mathbb {P}_{N-1}(\Omega ). \end{aligned}$$

Proof

Let \(\theta _{N-1}\in \mathbb {P}_{N-1}(\Omega ),\) we have

$$\begin{aligned} \Vert \theta - \mathscr {R}_N^0\theta \Vert _{L_1^2(\Omega )}\le & {} \Vert \theta - \theta _{N-1}\Vert _{L_1^2(\Omega )} +\Vert \theta _{N-1} - \mathscr {R}_N^0\theta \Vert _{L_1^2(\Omega )} \nonumber \\&\Vert \theta _{N-1} - \mathscr {R}_N^0\theta \Vert _N +\Vert \mathscr {R}_N^0(\theta _{N-1} - \theta )\Vert _N \end{aligned}$$
(5.1)

Note that

$$\begin{aligned} \forall \theta \in {L_1^2(\Omega )}, {\Vert \mathscr {R}_N^0\theta \Vert _N}^2=(\mathscr {R}_N^0\theta ,\mathscr {R}_N^0\theta )_N =(\theta ,\mathscr {R}_N^0\theta ). \end{aligned}$$

We can deduce that

$$\begin{aligned} {\Vert \mathscr {R}_N^0\theta \Vert _N}\le {\Vert \theta \Vert _{L_1^2(\Omega )}}. \end{aligned}$$

Applying this last inequality for \(\theta -\theta _{N-1}\) in (5.1) gives the result. \(\square \)

Lemma 5.2

For any function \(\chi \in V^1_1(\Omega )\), there exists a positive constant c such that:

$$\begin{aligned} \Vert \chi -\mathscr {R}_N^1\chi \Vert _{V^1_1(\Omega )}\le c \Vert \chi -\chi _{N-1}\Vert _{V^1_1(\Omega )},\forall \chi _{N-1}\in \mathbb {P}_{N-1}(\Omega ). \end{aligned}$$

Proof

Let \(\chi _{N-1} \in \mathbb {P}_{N-1}(\Omega ) \)

$$\begin{aligned} \Vert \chi -\mathscr {R}_N^1\chi \Vert _{V^1_1(\Omega )}\le \Vert \chi -\chi _{N-1}\Vert _{V^1_1(\Omega )}+\Vert \chi _{N-1}-\mathscr {R}_N^1\chi \Vert _{V^1_1(\Omega )} \end{aligned}$$

First, we have

$$\begin{aligned} \Vert \mathscr {R}_N^1\chi -\chi _{N-1}\Vert _{V^1_1(\Omega )}\le & {} \Vert \mathbf {curl}_{r} (\mathscr {R}_N^1\chi -\chi _{N-1})\Vert _{L_1^2(\Omega )}\nonumber \\\le & {} \Vert \mathbf {curl}_{r} (\mathscr {R}_N^1\chi -\chi _{N-1})\Vert _N \nonumber \\\le & {} \Vert \mathbf {curl}_{r} (\mathscr {R}_N^1(\chi -\chi _{N-1}))\Vert _N \end{aligned}$$
(5.2)

Next, for any \(\chi \in V^1_1(\Omega )\),

$$\begin{aligned} {\Vert \mathbf {curl}_{r} (\mathscr {R}_N^1\chi )\Vert _N}^2= & {} (\mathbf {curl}_{r} (\mathscr {R}_N^1\chi ),\mathbf {curl}_{r} (\mathscr {R}_N^1\chi ))_N \nonumber \\= & {} (\mathbf {curl}_{r} (\chi ),\mathbf {curl}_{r} (\mathscr {R}_N^1\chi ))_N \end{aligned}$$
(5.3)

This leads to

$$\begin{aligned} \Vert \mathbf {curl}_{r} (\mathscr {R}_N^1\chi )\Vert _N \le \Vert \mathbf {curl}_{r} \chi \Vert _{L_1^2(\Omega )}\le c \Vert \chi \Vert _{V^1_1(\Omega )}. \end{aligned}$$

Applying this last result to \(\chi -\chi _{N-1}\) together with (5.2) give

$$\begin{aligned} \Vert \mathscr {R}_N^1\chi -\chi _{N-1}\Vert _{V^1_1(\Omega )} \le c \Vert \chi -\chi _{N-1}\Vert _{V^1_1(\Omega )}. \end{aligned}$$

\(\square \)

Lemma 5.3. can be proven by using the same arguments as previously, we just state it.

Lemma 5.3

For any function \(\chi \in V^1_{1\diamond }(\Omega )\), there exists a positive constant c such that:

$$\begin{aligned} \Vert \chi -\mathscr {R}_N^{1,0}\chi \Vert _{V^1_1(\Omega )}\le c \Vert \chi -\chi _{N-1}\Vert _{V^1_1(\Omega )},\forall \chi _{N-1}\in \mathbb {P}_{N-1}^0(\Omega ). \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdellatif, N., Touihri, M. & El Amin, M. Spectral element discretization for the stream-function and vorticity formulation of the axisymmetric Stokes problem. Calcolo 53, 343–361 (2016). https://doi.org/10.1007/s10092-015-0152-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10092-015-0152-1

Keywords

Mathematics Subject Classification

Navigation