Skip to main content
Log in

Spectral element discretization of the vorticity, velocity and pressure formulation of the Navier–Stokes problem

  • Published:
Calcolo Aims and scope Submit manuscript

Abstract

The two-dimensional Navier–Stokes equations, when subject to non-standard boundary conditions which involve the normal component of the velocity and the vorticity, admit a variational formulation with three independent unknowns, the vorticity, velocity and pressure. We propose a discretization of this problem by spectral element methods. A detailed numerical analysis leads to optimal error estimates for the three unknowns and numerical experiments confirm the interest of the discretization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • 1. Amara, M., Capatina-Papaghiuc, D., Chacón-Vera, E., Trujillo, D.: Vorticity–velocity–pressure formulation for Navier–Stokes equations. Comput. Vis. Sci. 6, 47–52 (2004)

    Google Scholar 

  • 2. Amoura, K., Bernardi, C., Chorfi, N.: Spectral element discretization of the vorticity, velocity and pressure formulation of the Stokes problem. M2AN Math. Model. Numer. Anal. 40, 897–921 (2006)

    Google Scholar 

  • 3. Amrouche, C., Bernardi, C., Dauge, M., Girault, V.: Vector potentials in three-dimensional non-smooth domains. Math. Methods Appl. Sci. 21, 823–864 (1998)

    Google Scholar 

  • 4. Azaïez, M., Bernardi, C., Chorfi, N.: Spectral discretization of the vorticity, velocity and pressure formulation of the Navier–Stokes equations. Numer. Math. 104, 1–26 (2006)

    Google Scholar 

  • 5. Bernardi, C., Chorfi N.: Spectral discretization of the vorticity, velocity and pressure formulation of the Stokes problem. SIAM J. Numer. Anal. 44, 826–850 (2006)

    Google Scholar 

  • 6. Bernardi, C., Girault, V., Raviart, P.-A.: Incompressible viscous fluids and their finite element discretizations. In preparation.

  • 7. Bernardi, C., Maday, Y.: Spectral methods, In: Ciarlet, P.G., Lions, J.-L. (eds.): Handbook of numerical analysis. V. Amsterdam: North-Holland (1997), pp. 209–485

  • 8. Brezzi, F., Rappaz, J., Raviart, P.-A.: Finite dimensional approximation of nonlinear problems. I: Branches of nonsingular solutions. Numer. Math. 36, 1–25 (1980)

    Google Scholar 

  • 9. Caltagirone, J.-P., Breil, J.: Sur une méthode de projection vectorielle pour la résolution des équations de Navier-Stokes. C. R. Acad. Sci. Paris Sér. II b Méc. Phys. Astron. 327, 1179–1184 (1999)

    Google Scholar 

  • 10. Costabel, M.: A remark on the regularity of solutions of Maxwell's equations on Lipschitz domains. Math. Methods Appl. Sci. 12, 365–368 (1990)

    Google Scholar 

  • 11. Dubois, F.: Vorticity–velocity–pressure formulation for the Stokes problem, Math. Methods Appl. Sci. 25, 1091–1119 (2002)

    Google Scholar 

  • 12. Dubois, F., Salaün, M., Salmon, S.: Vorticity–velocity–pressure and stream function-vorticity formulations for the Stokes problem. J. Math. Pures Appl. (9) 82, 1395–1451 (2003)

    Google Scholar 

  • 13. Girault, V., Raviart, P.-A.: Finite element methods for Navier–Stokes equations. Theory and algorithms. Berlin: Springer (1986)

  • 14. Maday, Y., Rønquist, E.M.: Optimal error analysis of spectral methods with emphasis on nonconstant coefficients and deformed geometries. Comput. Methods Appl. Mech. Engrg. 80, 91–115 (1990)

    Google Scholar 

  • 15. Nédélec, J.-C.: Mixed finite elements in R3. Numer. Math. 35, 315–341 (1980)

    Google Scholar 

  • 16. Peyret, R., Taylor, T.D.: Computational methods for fluid flow. Berlin: Springer 1983

  • 17. Salmon, S.: Développement numérique de la formulation tourbillon–vitesse–pression pour le problème de Stokes. Thèse de doctorat. Paris: Université Pierre et Marie Curie (1999)

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amoura, K., Azaïez, M., Bernardi, C. et al. Spectral element discretization of the vorticity, velocity and pressure formulation of the Navier–Stokes problem. Calcolo 44, 165–188 (2007). https://doi.org/10.1007/s10092-007-0135-y

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10092-007-0135-y

Keywords

Navigation