Skip to main content

Advertisement

Log in

Prediction model for mild cognitive impairment in patients with type 2 diabetes using the autonomic function test

  • Original Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

Objective

Type 2 diabetes mellitus (T2DM) is a risk factor for cognitive impairment, and reduced heart rate variability (HRV) has been correlated with cognitive impairment in elderly individuals. This study investigated risk factors and validated a predictive model for mild cognitive impairment (MCI) in patients with T2DM using an autonomic function test.

Methods

Patients with T2DM, 50–85 years of age, who attended the diabetes clinic at Gyeongsang National University Hospital between March 2018 and December 2019, were included. A total of 201 patients had been screened; we enrolled 124 patients according to the inclusion and exclusion criteria in this study. Cognitive function was assessed using the Montreal Cognitive Assessment-Korean version (MOCA-K); MCI was defined as a total MOCA-K score ≤ 23. Risk factors for MCI in patients with T2DM, including demographic- and diabetes-related factors, and autonomic function test results, were analyzed. Based on multivariate logistic regression, a nomogram was developed as a prediction model for MCI.

Results

Thirty-nine of 124 patients were diagnosed with MCI. Age, education, and decreased cardiovagal function were associated with a high risk for MCI, with cardiovagal function exerting the greatest influence. However, diabetes-related factors, such as glycemic control, duration of diabetes, or medications, were not associated with the risk for MCI. The nomogram demonstrated excellent discrimination (area under the curve, 0.832) and was well calibrated.

Conclusion

Approximately one-third of patients had MCI; as such, carefully evaluating cognitive function in elderly T2DM patients with reduced HRV is important to prevent progression to dementia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The datasets used during current study available from the corresponding author on reasonable request.

References

  1. Sun H, Saeedi P, Karuranga S, Pinkepank M, Ogurtsova K, Duncan BB et al (2022) IDF Diabetes Atlas: global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res Clin Pract 183:109119. https://doi.org/10.1016/j.diabres.2021.109119

    Article  PubMed  Google Scholar 

  2. Biessels GJ, Staekenborg S, Brunner E, Brayne C, Scheltens P (2006) Risk of dementia in diabetes mellitus: a systematic review. Lancet Neurol 5(1):64–74. https://doi.org/10.1016/S1474-4422(05)70284-2

    Article  PubMed  Google Scholar 

  3. Koekkoek PS, Kappelle LJ, van den Berg E, Rutten GE, Biessels GJ (2015) Cognitive function in patients with diabetes mellitus: guidance for daily care. Lancet Neurol 14(3):329–340. https://doi.org/10.1016/S1474-4422(14)70249-2

    Article  PubMed  Google Scholar 

  4. Monette MC, Baird A, Jackson DL (2014) A meta-analysis of cognitive functioning in nondemented adults with type 2 diabetes mellitus. Can J Diabetes 38(6):401–408. https://doi.org/10.1016/j.jcjd.2014.01.014

    Article  PubMed  Google Scholar 

  5. Dove A, Shang Y, Xu W, Grande G, Laukka EJ, Fratiglioni L et al (2021) The impact of diabetes on cognitive impairment and its progression to dementia. Alzheimers Dement 17(11):1769–1778. https://doi.org/10.1002/alz.12482

    Article  PubMed  Google Scholar 

  6. Biessels GJ, Despa F (2018) Cognitive decline and dementia in diabetes mellitus: mechanisms and clinical implications. Nat Rev Endocrinol 14(10):591–604. https://doi.org/10.1038/s41574-018-0048-7

    Article  PubMed  PubMed Central  Google Scholar 

  7. Roberts RO, Knopman DS, Geda YE, Cha RH, Pankratz VS, Baertlein L et al (2014) Association of diabetes with amnestic and nonamnestic mild cognitive impairment. Alzheimers Dement 10(1):18–26. https://doi.org/10.1016/j.jalz.2013.01.001

    Article  PubMed  Google Scholar 

  8. Sinclair AJ, Girling AJ, Bayer AJ (2000) Cognitive dysfunction in older subjects with diabetes mellitus: impact on diabetes self-management and use of care services. Diabetes Res Clin Pract 50(3):203–212

    Article  CAS  PubMed  Google Scholar 

  9. Wu J, Fang Y, Tan X, Kang S, Yue X, Rao Y et al (2023) Detecting type 2 diabetes mellitus cognitive impairment using whole-brain functional connectivity. Sci Rep 13(1):3940. https://doi.org/10.1038/s41598-023-28163-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Maimaitituerxun R, Chen W, Xiang J, Xie Y, Kaminga AC, Wu XY et al (2023) The use of nomogram for detecting mild cognitive impairment in patients with type 2 diabetes mellitus. J Diabetes 15(5):448–458. https://doi.org/10.1111/1753-0407.13384

    Article  PubMed  PubMed Central  Google Scholar 

  11. Xu Z, Zhao L, Yin L, Liu Y, Ren Y, Yang G et al (2022) MRI-based machine learning model: a potential modality for predicting cognitive dysfunction in patients with type 2 diabetes mellitus. Front Bioeng Biotechnol 10:1082794. https://doi.org/10.3389/fbioe.2022.1082794

    Article  PubMed  PubMed Central  Google Scholar 

  12. (2003) Testing the autonomic nervous system. Semin Neurol 23(4):407–22. https://doi.org/10.1055/s-2004-817725

  13. ElSayed NA, Aleppo G, Aroda VR, Bannuru RR, Brown FM, Bruemmer D et al (2023) 12. Retinopathy, neuropathy, and foot care: standards of care in diabetes-2023. Diabetes Care. 46(Suppl 1):S203–S15. https://doi.org/10.2337/dc23-S012

    Article  CAS  PubMed  Google Scholar 

  14. Pan Q, Li Q, Deng W, Zhao D, Qi L, Huang W et al (2019) Prevalence and diagnosis of diabetic cardiovascular autonomic neuropathy in Beijing, China: a retrospective multicenter clinical study. Front Neurosci 13:1144. https://doi.org/10.3389/fnins.2019.01144

    Article  PubMed  PubMed Central  Google Scholar 

  15. Agashe S, Petak S (2018) Cardiac autonomic neuropathy in diabetes mellitus. Methodist DeBakey Cardiovasc J 14(4):251. https://doi.org/10.14797/mdcj-14-4-251

    Article  PubMed  PubMed Central  Google Scholar 

  16. Hilgarter K, Schmid-Zalaudek K, Csanady-Leitner R, Mortl M, Rossler A, Lackner HK (2021) Phasic heart rate variability and the association with cognitive performance: a cross-sectional study in a healthy population setting. PLoS One 16(3):e0246968. https://doi.org/10.1371/journal.pone.0246968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Schaich CL, Malaver D, Chen H, Shaltout HA, Zeki Al Hazzouri A, Herrington DM et al (2020) Association of heart rate variability with cognitive performance: the multi-ethnic study of atherosclerosis. J Am Heart Assoc 9(7):e013827. https://doi.org/10.1161/JAHA.119.013827

    Article  PubMed  PubMed Central  Google Scholar 

  18. Imbimbo C, Spallazzi M, Ferrari-Pellegrini F, Villa A, Zilioli A, Mutti C et al (2022) Heart rate variability and cognitive performance in adults with cardiovascular risk. Cereb Circ Cogn Behav 3:100136. https://doi.org/10.1016/j.cccb.2022.100136

    Article  PubMed  PubMed Central  Google Scholar 

  19. Zimmermann M, Wurster I, Lerche S, Roeben B, Machetanz G, Sunkel U et al (2020) Orthostatic hypotension as a risk factor for longitudinal deterioration of cognitive function in the elderly. Eur J Neurol 27(1):160–167. https://doi.org/10.1111/ene.14050

    Article  CAS  PubMed  Google Scholar 

  20. Barzilay JI, Ghosh A, Busui RP, Ahmann A, Balasubramanyam A, Banerji MA et al (2021) The cross-sectional association of cognition with diabetic peripheral and autonomic neuropathy-the GRADE study. J Diabetes Complicat 35(12):108047. https://doi.org/10.1016/j.jdiacomp.2021.108047

    Article  CAS  Google Scholar 

  21. Foster-Dingley JC, Moonen JEF, de Ruijter W, van der Mast RC, van der Grond J (2018) Orthostatic hypotension in older persons is not associated with cognitive functioning, features of cerebral damage or cerebral blood flow. J Hypertens 36(5):1201–1206. https://doi.org/10.1097/HJH.0000000000001681

    Article  CAS  PubMed  Google Scholar 

  22. Lee J, Lee C, Min J, Kang DW, Kim JY, Yang HI et al (2020) Development of the Korean Global Physical Activity Questionnaire: reliability and validity study. Glob Health Promot 27(3):44–55. https://doi.org/10.1177/1757975919854301

    Article  PubMed  Google Scholar 

  23. Nasreddine ZS, Phillips NA, Bédirian V, Charbonneau S, Whitehead V, Collin I et al (2005) The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment. J Am Geriatr Soc 53(4):695–699. https://doi.org/10.1111/j.1532-5415.2005.53221.x

    Article  PubMed  Google Scholar 

  24. Carson N, Leach L, Murphy KJ (2018) A re-examination of Montreal Cognitive Assessment (MoCA) cutoff scores. Int J Geriatr Psychiatry 33(2):379–388. https://doi.org/10.1002/gps.4756

    Article  PubMed  Google Scholar 

  25. Lee JY, Dong Woo L, Cho SJ, Na DL, Hong Jin J, Kim SK et al (2008) Brief screening for mild cognitive impairment in elderly outpatient clinic: validation of the Korean version of the Montreal Cognitive Assessment. J Geriatr Psychiatry Neurol 21(2):104–110. https://doi.org/10.1177/0891988708316855

    Article  PubMed  Google Scholar 

  26. Low PA (1993) Composite autonomic scoring scale for laboratory quantification of generalized autonomic failure. Mayo Clin Proc 68(8):748–752. https://doi.org/10.1016/s0025-6196(12)60631-4

    Article  CAS  PubMed  Google Scholar 

  27. Kattan MW, Marasco J (2010) What is a real nomogram? Semin Oncol 37(1):23–26. https://doi.org/10.1053/j.seminoncol.2009.12.003

    Article  PubMed  Google Scholar 

  28. Bai W, Chen P, Cai H, Zhang Q, Su Z, Cheung T et al (2022) Worldwide prevalence of mild cognitive impairment among community dwellers aged 50 years and older: a meta-analysis and systematic review of epidemiology studies. Age Ageing 51(8). https://doi.org/10.1093/ageing/afac173

  29. You Y, Liu Z, Chen Y, Xu Y, Qin J, Guo S et al (2021) The prevalence of mild cognitive impairment in type 2 diabetes mellitus patients: a systematic review and meta-analysis. Acta Diabetol 58(6):671–685. https://doi.org/10.1007/s00592-020-01648-9

    Article  PubMed  Google Scholar 

  30. Lee YJ, Kang HM, Kim NK, Yang JY, Noh JH, Ko KS et al (2014) Factors associated for mild cognitive impairment in older Korean adults with type 2 diabetes mellitus. Diabetes Metab J 38(2):150–157. https://doi.org/10.4093/dmj.2014.38.2.150

    Article  PubMed  PubMed Central  Google Scholar 

  31. Cooper C, Sommerlad A, Lyketsos CG, Livingston G (2015) Modifiable predictors of dementia in mild cognitive impairment: a systematic review and meta-analysis. Am J Psychiatry 172(4):323–334. https://doi.org/10.1176/appi.ajp.2014.14070878

    Article  PubMed  Google Scholar 

  32. Exalto LG, Biessels GJ, Karter AJ, Huang ES, Katon WJ, Minkoff JR et al (2013) Risk score for prediction of 10 year dementia risk in individuals with type 2 diabetes: a cohort study. Lancet Diabetes Endocrinol 1(3):183–190. https://doi.org/10.1016/S2213-8587(13)70048-2

    Article  PubMed  PubMed Central  Google Scholar 

  33. Geijselaers SLC, Sep SJS, Stehouwer CDA, Biessels GJ (2015) Glucose regulation, cognition, and brain MRI in type 2 diabetes: a systematic review. Lancet Diabetes Endocrinol 3(1):75–89. https://doi.org/10.1016/S2213-8587(14)70148-2

    Article  CAS  PubMed  Google Scholar 

  34. Meng X, D’Arcy C (2012) Education and dementia in the context of the cognitive reserve hypothesis: a systematic review with meta-analyses and qualitative analyses. PLoS One 7(6):e38268. https://doi.org/10.1371/journal.pone.0038268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hasselmo ME, Bower JM (1993) Acetylcholine and memory. Trends Neurosci 16(6):218–222. https://doi.org/10.1016/0166-2236(93)90159-j

    Article  CAS  PubMed  Google Scholar 

  36. Kim DH, Lipsitz LA, Ferrucci L, Varadhan R, Guralnik JM, Carlson MC et al (2006) Association between reduced heart rate variability and cognitive impairment in older disabled women in the community: Women’s Health and Aging Study I. J Am Geriatr Soc 54(11):1751–1757. https://doi.org/10.1111/j.1532-5415.2006.00940.x

    Article  PubMed  PubMed Central  Google Scholar 

  37. Nonogaki Z, Umegaki H, Makino T, Suzuki Y, Kuzuya M (2017) Relationship between cardiac autonomic function and cognitive function in Alzheimer’s disease. Geriatr Gerontol Int 17(1):92–98. https://doi.org/10.1111/ggi.12679

    Article  PubMed  Google Scholar 

  38. Fishwick KJ, Rylett RJ (2015) Insulin regulates the activity of the high-affinity choline transporter CHT. PLoS One 10(7):e0132934. https://doi.org/10.1371/journal.pone.0132934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hegazy AM, Abdel Azeem AS, Shahy EM, El-Sayed EM (2016) Comparative study of cholinergic and oxidative stress biomarkers in brains of diabetic and hypercholesterolemic rats. Hum Exp Toxicol 35(3):251–258. https://doi.org/10.1177/0960327115583361

    Article  CAS  PubMed  Google Scholar 

  40. Mushtaq G, Greig NH, Khan JA, Kamal MA (2014) Status of acetylcholinesterase and butyrylcholinesterase in Alzheimer’s disease and type 2 diabetes mellitus. CNS Neurol Disord Drug Targets 13(8):1432–1439. https://doi.org/10.2174/1871527313666141023141545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. van Buchem MA, Biessels GJ, Brunner la Rocca HP, de Craen AJ, van der Flier WM, Ikram MA et al (2014) The heart-brain connection: a multidisciplinary approach targeting a missing link in the pathophysiology of vascular cognitive impairment. J Alzheimers Dis 42(Suppl 4):S443-51. https://doi.org/10.3233/JAD-141542

    Article  PubMed  Google Scholar 

  42. Allen B, Jennings JR, Gianaros PJ, Thayer JF, Manuck SB (2015) Resting high-frequency heart rate variability is related to resting brain perfusion. Psychophysiology 52(2):277–287. https://doi.org/10.1111/psyp.12321

    Article  PubMed  Google Scholar 

  43. Hu G, Collet JP, Zhao M, Lu Y, Wang Y (2023) Associations between autonomic function and cognitive performance among patients with cerebral small vessel disease. Brain Sci 13(2). https://doi.org/10.3390/brainsci13020344.

  44. Verberne AJ, Owens NC (1998) Cortical modulation of the cardiovascular system. Prog Neurobiol 54(2):149–168. https://doi.org/10.1016/s0301-0082(97)00056-7

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Seung Chan Kim for advice on statistical analysis.

Funding

This research was funded by the Neurological Disorder Research Program of the National Research Foundation funded by the Korean Government (MSIT) (2020M3E5D9080663), the Lee Jung Ja research grant of Gyeongsang National University Hospital (LJJ-GNUH_2018-005), and grants from the Basic Science Research Program through the National Research Foundation of Korea (2021R1A2C2093913).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soo Kyoung Kim.

Ethics declarations

Ethical approval

None.

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 185 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, H., Kim, J., Kim, M. et al. Prediction model for mild cognitive impairment in patients with type 2 diabetes using the autonomic function test. Neurol Sci (2024). https://doi.org/10.1007/s10072-024-07451-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10072-024-07451-6

Keywords

Navigation