Skip to main content

Advertisement

Log in

Ultrasonographic evaluation reveals thinning of cervical nerve roots and peripheral nerves in spinal and bulbar muscular atrophy

  • Original Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

Background

Ultrasonography (US) is a noninvasive and patient-friendly tool for the evaluation of peripheral nerves. In motor neuron diseases, amyotrophic lateral sclerosis (ALS) has been reported to show the atrophy of peripheral nerves on US. However, the US findings are still unclear in spinal and bulbar muscular atrophy (SBMA), an adult-onset lower motor neuron disease caused by an abnormal CAG repeat expansion in the androgen receptor gene.

Methods

We prospectively recruited and evaluated 11 patients with genetically confirmed SBMA and 9 patients with ALS diagnosed according to the revised El Escorial ALS criteria or the Awaji electrodiagnostic criteria. The C5–C7 cervical nerve roots and the median and ulnar nerves were evaluated ultrasonographically.

Results

The cross-sectional areas (CSAs) of the C6 and C7 nerve roots, the median nerve in the upper arm and forearm, and the ulnar nerve in the upper arm were smaller in patients with SBMA than those in patients with ALS (p < 0.05), whereas the CSAs of the C5 nerve root and the ulnar nerve in the forearm were not smaller.

Conclusions

US showed that the peripheral nerves in patients with SBMA were thinner than those in patients with ALS despite similar degrees of weakness and motor neuron loss. Possible causes include additional sensory nerve involvement and longer disease duration in patients with SBMA than those in patients with ALS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Tanaka F, Doyu M, Ito Y et al (1996) Founder effect in spinal and bulbar muscular atrophy (SBMA). Hum Mol Genet 5:1253–1257. https://doi.org/10.1093/hmg/5.9.1253

    Article  CAS  PubMed  Google Scholar 

  2. Andrew SE, Goldberg YP, Hayden MR (1997) Rethinking genotype and phenotype correlations in polyglutamine expansion disorders. Hum Mol Genet 6:2005–2010. https://doi.org/10.1093/hmg/6.12.2005

    Article  CAS  PubMed  Google Scholar 

  3. Kennedy WR, Alter M, Sung JH (1968) Progressive proximal spinal and bulbar muscular atrophy of late onset: a sex-linked recessive trait. Neurology 18:671–680. https://doi.org/10.1212/wnl.18.7.671

    Article  CAS  PubMed  Google Scholar 

  4. Arbizu T, Santamaría J, Gomez JM, Quílez A, Serra JP (1983) A family with adult spinal and bulbar muscular atrophy, X-linked inheritance and associated testicular failure. J Neurol Sci 59:371–382. https://doi.org/10.1016/0022-510X(83)90022-9

    Article  CAS  PubMed  Google Scholar 

  5. Li M, Sobue G, Doyu M, Mukai E, Hashizume Y, Mitsuma T (1995) Primary sensory neurons in X-linked recessive bulbospinal neuronopathy: histopathology and androgen receptor gene expression. Muscle Nerve 18:301–308. https://doi.org/10.1002/mus.880180306

    Article  CAS  PubMed  Google Scholar 

  6. Hardiman O, van den Berg LH, Kiernan MC (2011) Clinical diagnosis and management of amyotrophic lateral sclerosis. Nat Rev Neurol 7:639–649. https://doi.org/10.1038/nrneurol.2011.153

    Article  CAS  PubMed  Google Scholar 

  7. Gallo JM (2004) Chapter 23 Spinobulbar muscular atrophy (Kennedy’s disease). In: Eisen A (ed) Clinical neurophysiology of motor neuron diseases. In: Daube JR, Maugiere F (ed) Handbook of clinical neurophysiology, vol. 4. Elsevier, Philadelphia, pp 403–417

  8. Pillen S, van Alfen N, Zwarts MJ (2011) Inherited neuronal atrophy and degeneration predominantly of lower motor neurons. In: Walker FO, Cartwright MS (eds) Neuromuscular ultrasound. Elsevier, Philadelphia, pp 37–56

    Chapter  Google Scholar 

  9. Hobson-Webb LD (2013) Neuromuscular ultrasound in polyneuropathies and motor neuron disease. Muscle Nerve 47:790–804. https://doi.org/10.1002/mus.23737

    Article  PubMed  Google Scholar 

  10. Sobue G, Hashizume Y, Mitsuma T, Takahashi A (1987) Size-dependent myelinated fiber loss in the corticospinal tract in Shy-Drager syndrome and amyotrophic lateral sclerosis. Neurology 37:529–532. https://doi.org/10.1212/wnl.37.3.529

    Article  CAS  PubMed  Google Scholar 

  11. Sobue G, Matsuoka Y, Mukai E, Takayanagi T, Sobue I (1981) Pathology of myelinated fibers in cervical and lumbar ventral spinal roots in amyotrophic lateral sclerosis. J Neurol Sci 50:413–421. https://doi.org/10.1016/0022-510x(81)90153-2

    Article  CAS  PubMed  Google Scholar 

  12. Cartwright MS, Walker FO, Griffin LP, Caress JB (2011) Peripheral nerve and muscle ultrasound in amyotrophic lateral sclerosis. Muscle Nerve 44:346–351. https://doi.org/10.1002/mus.22035

    Article  PubMed  PubMed Central  Google Scholar 

  13. Nodera H, Takamatsu N, Shimatani Y et al (2014) Thinning of cervical nerve roots and peripheral nerves in ALS as measured by sonography. Clin Neurophysiol 125:1906–1911. https://doi.org/10.1016/j.clinph.2014.01.033

    Article  PubMed  Google Scholar 

  14. Schreiber S, Abdulla S, Debska-Vielhaber G et al (2015) Peripheral nerve ultrasound in ALS phenotypes. Muscle Nerve 51:669–675. https://doi.org/10.1002/mus.24431

    Article  PubMed  Google Scholar 

  15. Schreiber S, Schreiber F, Debska-Vielhaber G et al (2018) Differential involvement of forearm muscles in ALS does not relate to sonographic structural nerve alterations. Clin Neurophysiol 129:1438–1443. https://doi.org/10.1016/j.clinph.2018.04.610

    Article  PubMed  Google Scholar 

  16. Schreiber S, Schreiber F, Garz C et al (2019) Toward in vivo determination of peripheral nervous system immune activity in amyotrophic lateral sclerosis. Muscle Nerve 59:567–576. https://doi.org/10.1002/mus.26444

    Article  CAS  PubMed  Google Scholar 

  17. Mori A, Nodera H, Takamatsu N et al (2016) Sonographic evaluation of cervical nerve roots in ALS and its clinical subtypes. J Med Invest 63:54–57. https://doi.org/10.2152/jmi.63.54

    Article  PubMed  Google Scholar 

  18. Noto YI, Garg N, Li T et al (2018) Comparison of cross-sectional areas and distal-proximal nerve ratios in amyotrophic lateral sclerosis. Muscle Nerve 58:777–783. https://doi.org/10.1002/mus.26301

    Article  PubMed  Google Scholar 

  19. Ríos-Díaz J, Del Baño-Aledo ME, Tembl-Ferrairó JI, Chumillas MJ, Vázquez-Costa JF, Martínez-Payá JJ (2019) Quantitative neuromuscular ultrasound analysis as biomarkers in amyotrophic lateral sclerosis. Eur Radiol 29:4266–4275. https://doi.org/10.1007/s00330-018-5943-8

    Article  PubMed  Google Scholar 

  20. Schreiber S, Vielhaber S, Schreiber F (2020) Cartwright MS (2020) Peripheral nerve imaging in amyotrophic lateral sclerosis. Clin Neurophysiol 131:2315–2326

    Article  Google Scholar 

  21. Mori A, Nodera H, Takamatsu N et al (2015) Focal nerve enlargement is not the cause for increased distal motor latency in ALS: sonographic evaluation. Clin Neurophysiol 126:1632–1637. https://doi.org/10.1016/j.clinph.2014.10.152

    Article  PubMed  Google Scholar 

  22. Grimm A, Décard BF, Athanasopoulou I, Schweikert K, Sinnreich M, Axer H (2015) Nerve ultrasound for differentiation between amyotrophic lateral sclerosis and multifocal motor neuropathy. J Neurol 262:870–880. https://doi.org/10.1007/s00415-015-7648-0

    Article  PubMed  Google Scholar 

  23. Goedee HS, van der Pol WL, van Asseldonk JH et al (2017) Diagnostic value of sonography in treatment-naive chronic inflammatory neuropathies. Neurology 88:143–151. https://doi.org/10.1212/WNL.0000000000003483

    Article  PubMed  Google Scholar 

  24. Brooks BR, Miller RG, Swash M, Munsat TL, World Federation of Neurology Research Group on Motor Neuron Diseases (2000) El Escorial revisited: revised criteria for the diagnosis of amyotrophic lateral sclerosis. Amyotroph Lateral Scler Other Motor Neuron Disord 1:293–299. https://doi.org/10.1080/146608200300079536

    Article  CAS  PubMed  Google Scholar 

  25. de Carvalho M, Dengler R, Eisen A et al (2008) Electrodiagnostic criteria for diagnosis of ALS. Clin Neurophysiol 119:497–503. https://doi.org/10.1016/j.clinph.2007.09.143

    Article  PubMed  Google Scholar 

  26. Qrimli M, Ebadi H, Breiner A et al (2016) Reference values for ultrasonography of peripheral nerves. Muscle Nerve 53:538–544. https://doi.org/10.1002/mus.24888

    Article  PubMed  Google Scholar 

  27. Sugimoto T, Ochi K, Hosomi N et al (2013) Ultrasonographic reference sizes of the median and ulnar nerves and the cervical nerve roots in healthy Japanese adults. Ultrasound Med Biol 39:1560–1570. https://doi.org/10.1016/j.ultrasmedbio.2013.03.031

    Article  PubMed  Google Scholar 

  28. Boehm J, Scheidl E, Bereczki D, Schelle T, Arányi Z (2014) High-resolution ultrasonography of peripheral nerves: measurements on 14 nerve segments in 56 healthy subjects and reliability assessments. Ultraschall Med 35:459–467. https://doi.org/10.1055/s-0033-1356385

    Article  CAS  PubMed  Google Scholar 

  29. Kleyweg RP, van der Meché FG, Schmitz PI (1991) Interobserver agreement in the assessment of muscle strength and functional abilities in Guillain-Barré syndrome. Muscle Nerve 14:1103–1109. https://doi.org/10.1002/mus.880141111

    Article  CAS  PubMed  Google Scholar 

  30. Doherty TJ, Brown WF (1993) The estimated numbers and relative sizes of thenar motor units as selected by multiple point stimulation in young and older adults. Muscle Nerve 16:355–366. https://doi.org/10.1002/mus.880160404

    Article  CAS  PubMed  Google Scholar 

  31. Martinoli C, Bianchi S, Santacroce E, Pugliese F, Graif M, Derchi LE (2002) Brachial plexus sonography: a technique for assessing the root level. AJR Am J Roentgenol 179:699–702. https://doi.org/10.2214/ajr.179.3.1790699

    Article  PubMed  Google Scholar 

  32. Hama T, Hirayama M, Hara T et al (2012) Discrimination of spinal and bulbar muscular atrophy from amyotrophic lateral sclerosis using sensory nerve action potentials. Muscle Nerve 45:169–174. https://doi.org/10.1002/mus.22291

    Article  PubMed  Google Scholar 

  33. Sperfeld AD, Bretschneider V, Flaith L et al (2005) MR-pathologic comparison of the upper spinal cord in different motor neuron diseases. Eur Neurol 53:74–77. https://doi.org/10.1159/000084650

    Article  PubMed  Google Scholar 

  34. Schreiber S, Dannhardt-Stieger V, Henkel D et al (2016) Quantifying disease progression in amyotrophic lateral sclerosis using peripheral nerve sonography. Muscle Nerve 54:391–397. https://doi.org/10.1002/mus.25066

    Article  PubMed  Google Scholar 

  35. Telleman JA, Herraets IJT, Goedee HS et al (2019) (2019) Nerve ultrasound: a reproducible diagnostic tool in peripheral neuropathy. Neurology 92:e443–e450. https://doi.org/10.1212/WNL.0000000000006856

    Article  Google Scholar 

  36. Hashizume A, Katsuno M, Suzuki K et al (2019) Efficacy and safety of leuprorelin acetate for subjects with spinal and bulbar muscular atrophy: pooled analyses of two randomized-controlled trials. J Neurol 266:1211–1221. https://doi.org/10.1007/s00415-019-09251-x

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank all the patients for their participation in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fumiaki Tanaka.

Ethics declarations

Ethical approval

The study was approved by the ethics committee of National Hospital Organization Hakone Hospital and Yokohama City University Hospital.

Consent to participate

All patients provided informed consent to participate in the present study prior to enrolment.

Consent for publication

All patients provided informed consent to participate in the present study prior to enrolment.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 31 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Watanabe, D., Tsukamoto, H., Abe, T. et al. Ultrasonographic evaluation reveals thinning of cervical nerve roots and peripheral nerves in spinal and bulbar muscular atrophy. Neurol Sci 43, 4267–4274 (2022). https://doi.org/10.1007/s10072-022-05969-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-022-05969-1

Keywords

Navigation