Skip to main content
Log in

Polymorphisms of the dopamine metabolic and signaling pathways are associated with susceptibility to motor levodopa-induced complications (MLIC) in Parkinson’s disease: a systematic review and meta-analysis

  • Original Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

Background

Dopamine replacement therapy remains the gold standard for symptomatic management of Parkinson’s disease worldwide. However, most patients will develop debilitating motor levodopa-induced complications (MLIC) in the form of levodopa-induced dyskinesia (LID) and/or motor fluctuations (MF). This study aimed to conduct a systematic review and meta-analysis on the pharmacogenetic association between LID and MF with common genetic variants of the dopamine metabolic and signaling pathways.

Methods

A meta-analysis was conducted according to the PRISMA guidelines. Extracted studies include case–control studies evaluating the association between SLC6A3/DAT rs28363170 and rs393795; COMT rs4680 and rs4633; MAO-B rs1799836, BDNF rs6265, DRD1 rs4532, DRD2 rs1800497, DRD3 rs6280, and DRD5 rs6283 polymorphisms; and the overall risk of MLIC and its subtypes LID or MF. Genotypic frequency were tested for deviation from the Hardy–Weinberg equilibrium (HWE), and the genetic association was examined using the allelic (a vs. A), recessive (aa vs. Aa + AA), dominant (aa + Aa vs. AA), overdominant (Aa vs. aa + AA), homozygous (aa vs. AA), and heterozygous (Aa vs. AA and aa vs. aA) models.

Results

Fourteen studies were included in the meta-analysis. A significant association was found between COMT rs46809 polymorphisms with LID but not MF, with the association observable in Asians but not Caucasians. In Asians, the COMT rs4633 was significantly associated with the occurrence of both LID and MF. The MAO-B rs1799836 was associated with both MF and LID. Among all the dopamine receptor genes analyzed, only DRD2 exhibited an association with LID. No association was observed between the SLC6AT/DAT and BDNF genes with either LID or MF.

Conclusion

Strong associations were observed between polymorphisms of genes regulating dopamine metabolism with the occurrence of LID and/or MF. The MAO-B rs1799836 may be potential for use as a general pharmacogenetic marker of MLIC, while the COMT rs4680 and rs4633 may be used as markers of LID in Asian ethnicities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

BDNF:

Brain-derived neurotrophic factor

CI:

Confidence interval

COMT:

Catechol-O-methyltransferase

DAT:

Dopamine transporter

DRD:

Dopamine receptor

HWE:

Hardy-Weinberg equilibrium

L-Dopa:

L-dopamine

LID:

Levodopa-induced dyskinesia

MAO:

Monoamine oxidase

MF:

Motor fluctuations

MLIC:

Motor levodopa-induced complications

OR:

Odds ratio

PD:

Parkinson’s disease

PRISMA:

Preferred Reporting Items for Systematic Reviews and Meta-Analysis

SLC6:

Solute carrier 6

SNP:

Single nucleotide polymorphism

References

  1. Poewe W, Seppi K, Tanner CM, Halliday GM, Brundin P, Volkmann J et al (2017) Parkinson disease. Nat Rev Dis Primers 3(1):1–21

    Article  Google Scholar 

  2. Dorsey ER, Elbaz A, Nichols E, Abd-Allah F, Abdelalim A, Adsuar JC et al (2018) Global, regional, and national burden of Parkinson’s disease, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol 17(11):939–953

    Article  Google Scholar 

  3. Moore DJ, West AB, Dawson VL, Dawson TM (2005) Molecular pathophysiology of Parkinson’s disease. Annu Rev Neurosci 28(1):57–87

    Article  CAS  PubMed  Google Scholar 

  4. Schulz-Schaeffer WJ (2010) The synaptic pathology of α-synuclein aggregation in dementia with Lewy bodies, Parkinson’s disease and Parkinson’s disease dementia. Acta Neuropathol 120(2):131–143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bergman H, Deuschl G (2002) Pathophysiology of Parkinson’s disease: from clinical neurology to basic neuroscience and back. Mov Disord 17(S3):S28-40

    Article  PubMed  Google Scholar 

  6. Lindenbach D, Bishop C (2013) Critical involvement of the motor cortex in the pathophysiology and treatment of Parkinson’s disease. Neurosci Biobehav Rev 37(10):2737–2750

    Article  PubMed  Google Scholar 

  7. Poewe W, Antonini A, Zijlmans JC, Burkhard PR, Vingerhoets F (2010) Levodopa in the treatment of Parkinson’s disease: an old drug still going strong. Clin Interv Aging 5:229

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Ahlskog JE, Muenter MD (2001) Frequency of levodopa-related dyskinesias and motor fluctuations as estimated from the cumulative literature. Mov Disord 16(3):448–458

    Article  CAS  PubMed  Google Scholar 

  9. Kalinderi K, Papaliagkas V, Fidani L (2019) Pharmacogenetics and levodopa induced motor complications. Int J Neurosci 129(4):384–392

    Article  CAS  PubMed  Google Scholar 

  10. Kalinderi K, Fidani L, Katsarou Z, Bostantjopoulou S (2011) Pharmacological treatment and the prospect of pharmacogenetics in Parkinson’s disease. Int J Clin Pract 65(12):1289–1294

    Article  CAS  PubMed  Google Scholar 

  11. Hisahara S, Shimohama S (2011) Dopamine receptors and Parkinson’s disease. Int J Med Chem: 403039

  12. Hyman C, Hofer M, Barde Y-A, Juhasz M, Yancopoulos GD, Squinto SP et al (1991) BDNF is a neurotrophic factor for dopaminergic neurons of the substantia nigra. Nature 350(6315):230–232

    Article  CAS  PubMed  Google Scholar 

  13. Falla M, Di Fonzo A, Hicks AA, Pramstaller PP, Fabbrini G (2021) Genetic variants in levodopa-induced dyskinesia (LID): a systematic review and meta-analysis. Parkinsonism Relat Disord 84:52–60

    Article  PubMed  Google Scholar 

  14. Moher D, Liberati A, Tetzlaff J, Altman DG, Prisma Group (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 6(7):e1000097

    Article  PubMed  PubMed Central  Google Scholar 

  15. Ulhaq ZS, Soraya GV, Milliana A, Tse WKF (2021) Association between GPER gene polymorphisms and GPER expression levels with cancer predisposition and progression. Heliyon 7(3):e06428

    Article  PubMed  PubMed Central  Google Scholar 

  16. Ulhaq ZS, Soraya GV, Budu Wulandari LR (2020) The role of IL-6–174 G/C polymorphism and intraocular IL-6 levels in the pathogenesis of ocular diseases: a systematic review and meta-analysis. Sci Rep 10(1):1–20

    Article  CAS  Google Scholar 

  17. Ulhaq ZS, Soraya GV (2020) Anti-IL-6 receptor antibody treatment for severe COVID-19 and the potential implication of IL-6 gene polymorphisms in novel coronavirus pneumonia. Med Clin 155(12):548

    Article  CAS  Google Scholar 

  18. Ulhaq Z, Soraya G (2020) Aqueous humor interleukin-6 levels in primary open-angle glaucoma (POAG): a systematic review and meta-analysis. Arch Soc Esp Oftalmol (Engl Ed) 95(7):315–321

    Article  CAS  Google Scholar 

  19. Soraya GV, Ulhaq ZS (2020) Crucial laboratory parameters in COVID-19 diagnosis and prognosis: an updated meta-analysis. Med Clin (Barc) 155(4):143–151

  20. Ulhaq Z (2020) Chemokine IL-8 level in aqueous humor of open-angle glaucoma: a meta-analysis. Arch Soc Esp Oftalmol (Engl Ed) 95(3):114–119

    Article  CAS  Google Scholar 

  21. Purcaro C, Vanacore N, Moret F, Di Battista ME, Rubino A, Pierandrei S et al (2019) DAT gene polymorphisms (rs28363170, rs393795) and levodopa-induced dyskinesias in Parkinson’s disease. Neurosci Lett 690:83–88

    Article  CAS  PubMed  Google Scholar 

  22. Kakinuma S, Beppu M, Sawai S, Nakayama A, Hirano S, Yamanaka Y et al (2020) Monoamine oxidase B rs1799836 G allele polymorphism is a risk factor for early development of levodopa-induced dyskinesia in Parkinson’s disease. eNeurologicalSci 19:100239

    Article  PubMed  PubMed Central  Google Scholar 

  23. Dos Santos EUD, Sampaio TF, Tenório dos Santos AD, Bezerra Leite FC, da Silva RC, Crovella S et al (2019) The influence of SLC 6A3 and DRD 2 polymorphisms on levodopa-therapy in patients with sporadic Parkinson’s disease. J Pharm Pharmacol 71(2):206–12

    Article  PubMed  CAS  Google Scholar 

  24. Michałowska M, Chalimoniuk M, Jówko E, Przybylska I, Langfort J, Toczylowska B et al (2020) Gene polymorphisms and motor levodopa-induced complications in Parkinson’s disease. Brain Behav 10(3):e01537

    Article  PubMed  PubMed Central  Google Scholar 

  25. Sampaio TF, Dos Santos EUD, de Lima GDC, Dos Anjos RSG, da Silva RC, Asano AGC et al (2018) MAO-B and COMT genetic variations associated with levodopa treatment response in patients with Parkinson’s disease. J Clin Pharmacol 58(7):920–926

    Article  CAS  PubMed  Google Scholar 

  26. Watanabe M, Harada S, Nakamura T, Ohkoshi N, Yoshizawa K, Hayashi A et al (2003) Association between catechol-O-methyltransferase gene polymorphisms and wearing-off and dyskinesia in Parkinson’s disease. Neuropsychobiology 48(4):190–193

    Article  CAS  PubMed  Google Scholar 

  27. Cheshire P, Bertram K, Ling H, O’sullivan SS, Halliday G, McLean C et al (2014) Influence of single nucleotide polymorphisms in COMT, MAO-A and BDNF genes on dyskinesias and levodopa use in Parkinson’s disease. Neurodegener Dis 13(1):24–28

    Article  CAS  PubMed  Google Scholar 

  28. Zhao C, Wang Y, Zhang B, Yue Y, Zhang J (2020) Genetic variations in catechol-o-methyltransferase gene are associated with levodopa response variability in Chinese patients with Parkinson’s disease. Sci Rep 10(1):1–8

    CAS  Google Scholar 

  29. Hao H, Shao M, An J, Chen C, Feng X, Xie S et al (2014) Association of catechol-O-methyltransferase and monoamine oxidase B gene polymorphisms with motor complications in Parkinson’s disease in a Chinese population. Parkinsonism Relat Disord 20(10):1041–1045

    Article  PubMed  Google Scholar 

  30. Wu H, Dong F, Wang Y, Xiao Q, Yang Q, Zhao J et al (2014) Catechol-O-methyltransferase Val158Met polymorphism: modulation of wearing-off susceptibility in a Chinese cohort of Parkinson’s disease. Parkinsonism Relat Disord 20(10):1094–1096

    Article  PubMed  Google Scholar 

  31. Qian Y, Liu J, Xu S, Yang X, Xiao Q (2017) Roles of functional catechol-O-methyltransferase genotypes in Chinese patients with Parkinson’s disease. Transl Neurodegener 6(1):1–11

    Article  CAS  Google Scholar 

  32. Comi C, Ferrari M, Marino F, Magistrelli L, Cantello R, Riboldazzi G et al (2017) Polymorphisms of dopamine receptor genes and risk of l-dopa–induced dyskinesia in Parkinson’s disease. Int J Mol Sci 18(2):242

    Article  PubMed Central  CAS  Google Scholar 

  33. Dos Santos EUD, Duarte EBC, Miranda LMR, Asano AGC, Asano NMJ, Maia M de MD et al (2019) Influence of DRD1 and DRD3 polymorphisms in the occurrence of motor effects in patients with sporadic Parkinson’s disease. Neuromol Med 21(3):295–302

    Article  CAS  Google Scholar 

  34. Wang J, Liu Z-L, Chen B (2001) Dopamine D5 receptor gene polymorphism and the risk of levodopa-induced motor fluctuations in patients with Parkinson’s disease. Neurosci Lett 308(1):21–24

    Article  CAS  PubMed  Google Scholar 

  35. Perez-Lloret S, Negre-Pages L, Damier P, Delval A, Derkinderen P, Destée A et al (2017) L-DOPA-induced dyskinesias, motor fluctuations and health-related quality of life: the COPARK survey. Eur J Neurol 24(12):1532–1538

    Article  CAS  PubMed  Google Scholar 

  36. Thakkinstian A, McElduff P, D’Este C, Duffy D, Attia J (2005) A method for meta-analysis of molecular association studies. Stat Med 24(9):1291–1306

    Article  PubMed  Google Scholar 

  37. Schrag A, Quinn N (2000) Dyskinesias and motor fluctuations in Parkinson’s disease: a community-based study. Brain 123(11):2297–2305

    Article  PubMed  Google Scholar 

  38. Lechun L, Yu S, Pengling H, Changqi H (2013) The COMT Val158Met polymorphism as an associated risk factor for Parkinson’s disease in Asian rather than Caucasian populations. Neurol India 61(1):12

    Article  PubMed  Google Scholar 

  39. Kaplan N, Vituri A, Korczyn AD, Cohen OS, Inzelberg R, Yahalom G et al (2014) Sequence variants in SLC6A3, DRD2, and BDNF genes and time to levodopa-induced dyskinesias in Parkinson’s disease. J Mol Neurosci 53(2):183–188

    Article  CAS  PubMed  Google Scholar 

  40. Papapetropoulos S, Argyriou A, Ellul J, Chroni E (2004) Comparison of motor fluctuations and L-dopa-induced dyskinesias in patients with familial and sporadic Parkinson’s disease. Eur J Neurol 11(2):115–119

    Article  CAS  PubMed  Google Scholar 

  41. Nutt JG (2008) Pharmacokinetics and pharmacodynamics of levodopa. Mov Disord 23(S3):S580–S584

    Article  PubMed  Google Scholar 

  42. Mones R, Elizan T, Siegel G (1971) Analysis of L-dopa induced dyskinesias in 51 patients with parkinsonism. J Neurol Neurosurg Psychiatry 34(6):668–673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zappia M, Annesi G, Nicoletti G, Arabia G, Annesi F, Messina D et al (2005) Sex differences in clinical and genetic determinants of levodopa peak-dose dyskinesias in Parkinson disease: an exploratory study. Arch Neurol 62(4):601–605

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

GS and ZU conceived, designed, and performed the study. GS, ZU, SF, NR, AKB, and MA analyzed and interpreted the data. GS, ZU, SS, MK, SH, MS, AG, and DF aided data collection and extraction. GS and ZU wrote the main draft and revise the manuscript. NR, AKB, and MA critically reviewed the manuscript. All authors reviewed and finally approved the manuscript.

Corresponding author

Correspondence to Zulvikar Syambani Ulhaq.

Ethics declarations

Ethical approval and informed consent

None.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Gita Vita Soraya and Zulvikar Syambani Ulhaq have contributed equally to this work and share first authorship.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1257 KB)

Supplementary file2 (PDF 110 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soraya, G.V., Ulhaq, Z.S., Shodry, S. et al. Polymorphisms of the dopamine metabolic and signaling pathways are associated with susceptibility to motor levodopa-induced complications (MLIC) in Parkinson’s disease: a systematic review and meta-analysis. Neurol Sci 43, 3649–3670 (2022). https://doi.org/10.1007/s10072-021-05829-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-021-05829-4

Keywords

Navigation