Skip to main content

Advertisement

Log in

New pharmacological and neuromodulation approaches for impulsive-compulsive behaviors in Parkinson’s disease

  • Review Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

Introduction

A significant proportion of patients with Parkinson’s disease (PD) display a set of impulsive-compulsive behaviors at some point during the course of illness. These behaviors range from the so-called behavioral addictions to dopamine dysregulation syndrome, punding and hoarding disorders. These behaviors have been consistently linked to the use of dopaminergic medications used to treat PD motor symptoms (dopamine agonists, levodopa, and other agents) and less consistently to neuromodulation techniques such as deep brain stimulation (DBS). Since there are still no approved treatments for these conditions, their pharmacological management is still a big challenge for clinicians.

Methods

We conducted an extensive review of current pharmacological and neuromodulation literature for the management of impulsive-compulsive disorders in PD patients.

Results

Pharmacological treatment approaches for impulsive-compulsive behaviors and DDS in PD patients include reduction of levodopa (LD), reduction/cessation of dopamine agonist (DA), and initiation of infusion therapies (apomorphine infusion and duodopa). Also, atomoxetine, a noradrenergic agent approved for the treatment of attention deficit hyperactivity disorder, showed some interesting preliminary results but there is still a lack of controlled longitudinal studies. Finally, while DBS effects on impulsive-compulsive disorders are still controversial, non-invasive techniques (such as transcranial magnetic stimulation and transcranial direct current stimulation) could have a potential positive effect but, again, there is still a lack of controlled trials.

Conclusion

Managing impulsivity and compulsivity in PD patients is still a non-evidence-based challenge for clinicians. Controlled trials on promising approaches such as atomoxetine and non-invasive neuromodulation techniques are needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Weintraub D, Koester J, Potenza MN, Siderowf AD, Stacy M, Voon V, Whetteckey J, Wunderlich GR, Lang AE (2010) Impulse control disorders in Parkinson disease: a cross-sectional study of 3090 patients. Arch Neurol 67(5):589–595. https://doi.org/10.1001/archneurol.2010.65

    Article  PubMed  Google Scholar 

  2. Voon V, Napier TC, Frank MJ, Sgambato-Faure V, Grace AA, Rodriguez-Oroz M, Obeso J, Bezard E, Fernagut PO (2017) Impulse control disorders and levodopa-induced dyskinesias in Parkinson’s disease: an update. Lancet Neurol 16(3):238–250. https://doi.org/10.1016/S1474-4422(17)30004-2

    Article  PubMed  Google Scholar 

  3. Kovács M, Makkos A, Pintér D, Juhász A, Darnai G, Karádi K, Janszky J, Kovács N (2019) Screening for problematic internet use may help identify impulse control disorders in Parkinson’s disease. Behav Neurol 3:4925015. https://doi.org/10.1155/2019/4925015

    Article  Google Scholar 

  4. Lee JY, Kim JM, Kim JW, Cho J, Lee WY, Kim HJ, Jeon BS (2010) Association between the dose of dopaminergic medication and the behavioral disturbances in Parkinson disease. Parkinsonism Relat Disord 16(3):202–207. https://doi.org/10.1016/j.parkreldis.2009.12.002

    Article  PubMed  Google Scholar 

  5. American Psychiatric Association (2013) Diagnostic and statistical manual of mental disorders: diagnostic and statistical manual of mental disorders, 5th edn. American Psychiatric Association, Arlington

    Book  Google Scholar 

  6. International Statistical Classification of Diseases and Related Health Problems (11th ed; ICD-11; World Health Organization, 2020)

  7. Jorgenson AG, Hsiao RC, Yen CF (2016) Internet addiction and other behavioral addictions. Child Adolesc Psychiatr Clin N Am 25(3):509–520. https://doi.org/10.1016/j.chc.2016.03.004

    Article  PubMed  Google Scholar 

  8. Weintraub D, Claassen DO (2017) Impulse control and related disorders in Parkinson’s disease. Int Rev Neurobiol 133:679–717. https://doi.org/10.1016/bs.irn.2017.04.006

    Article  PubMed  Google Scholar 

  9. Wu K, Politis M, O’Sullivan SS, Lawrence AD, Warsi S, Lees A, Piccini P (2014) Problematic Internet use in Parkinson’s disease. Parkinsonism Relat Disord 20(5):482–487. https://doi.org/10.1016/j.parkreldis.2014.01.019

    Article  PubMed  Google Scholar 

  10. Giovannoni G, O’Sullivan JD, Turner K, Manson AJ, Lees AJ (2000) Hedonistic homeostatic dysregulation in patients with Parkinson’s disease on dopamine replacement therapies. J Neurol Neurosurg Psychiatry 68(4):423–428. https://doi.org/10.1136/jnnp.68.4.423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Barbosa P, Djamshidian A, Lees AJ, Warner TT (2018) The outcome of dopamine dysregulation syndrome in Parkinson’s disease: a retrospective postmortem study. Mov Disord Clin Pract 5(5):519–522. https://doi.org/10.1002/mdc3.12671

    Article  PubMed  PubMed Central  Google Scholar 

  12. Warren N, O’Gorman C, Lehn A, Siskind D (2017) Dopamine dysregulation syndrome in Parkinson’s disease: a systematic review of published cases. J Neurol Neurosurg Psychiatry 88(12):1060–1064. https://doi.org/10.1136/jnnp-2017-315985

    Article  PubMed  Google Scholar 

  13. Spencer AH, Rickards H, Fasano A, Cavanna AE (2011) The prevalence and clinical characteristics of punding in Parkinson’s disease. Mov Disord 26(4):578–586. https://doi.org/10.1002/mds.23508

    Article  PubMed  Google Scholar 

  14. Mataix-Cols D (2014) Clinical practice. Hoarding disorder. N Engl J Med 370(21):2023–2030. https://doi.org/10.1056/NEJMcp1313051

    Article  CAS  PubMed  Google Scholar 

  15. Nordsletten AE, Reichenberg A, Hatch SL, Fernández de la Cruz L, Pertusa A, Hotopf M, Mataix-Cols D (2013) Epidemiology of hoarding disorder. Br J Psychiatry 203(6):445–452. https://doi.org/10.1192/bjp.bp.113.130195

    Article  PubMed  Google Scholar 

  16. Lo Monaco MR, Di Stasio E, Zuccalà G, Petracca M, Genovese D, Fusco D, Silveri MC, Liperoti R, Ricciardi D, Cipriani MC, Laudisio A, Bentivoglio AR (2020) Prevalence of obsessive-compulsive symptoms in elderly Parkinson disease patients: a case-control study. Am J Geriatr Psychiatry 28(2):167–175. https://doi.org/10.1016/j.jagp.2019.08.022

    Article  PubMed  Google Scholar 

  17. Gaboriau L, Victorri-Vigneau C, Gérardin M, Allain-Veyrac G, Jolliet-Evin P, Grall-Bronnec M (2014) Aripiprazole: a new risk factor for pathological gambling? A report of 8 case reports. Addict Behav 39(3):562–565. https://doi.org/10.1016/j.addbeh.2013.11.005

    Article  CAS  PubMed  Google Scholar 

  18. Bastiaens J, Dorfman BJ, Christos PJ, Nirenberg MJ (2013) Prospective cohort study of impulse control disorders in Parkinson’s disease. Mov Disord 28(3):327–333. https://doi.org/10.1002/mds.25291

    Article  PubMed  PubMed Central  Google Scholar 

  19. Weintraub D, Mamikonyan E, Papay K, Shea JA, Xie SX, Siderowf A (2012) Questionnaire for Impulsive-Compulsive Disorders in Parkinson’s Disease-Rating Scale. Mov Disord 27(2):242–247. https://doi.org/10.1002/mds.24023

    Article  PubMed  Google Scholar 

  20. Ramirez-Zamora A, Gee L, Boyd J, Biller J (2016) Treatment of impulse control disorders in Parkinson’s disease: practical considerations and future directions. Expert Rev Neurother 16(4):389–399. https://doi.org/10.1586/14737175.2016.1158103

    Article  CAS  PubMed  Google Scholar 

  21. Perez-Lloret S, Rey MV, Fabre N, Ory F, Spampinato U, Brefel-Courbon C, Montastruc JL, Rascol O (2012) Prevalence and pharmacological factors associated with impulse-control disorder symptoms in patients with Parkinson disease. Clin Neuropharmacol 35(6):261–265. https://doi.org/10.1097/WNF.0b013e31826e6e6d

    Article  PubMed  Google Scholar 

  22. Vargas AP, Cardoso FEC (2018) Impulse control and related disorders in Parkinson’s disease. Arq Neuropsiquiatr 76(6):399–410. https://doi.org/10.1590/0004-282X20180052

    Article  PubMed  Google Scholar 

  23. Averbeck BB, O’Sullivan SS, Djamshidian A (2014) Impulsive and compulsive behaviors in Parkinson’s disease. Annu Rev Clin Psychol 10:553–580. https://doi.org/10.1146/annurev-clinpsy-032813-153705

    Article  CAS  PubMed  Google Scholar 

  24. O’Sullivan SS, Evans AH, Lees AJ (2009) Dopamine dysregulation syndrome: an overview of its epidemiology, mechanisms and management. CNS Drugs 23(2):157–170. https://doi.org/10.2165/00023210-200923020-00005

    Article  PubMed  Google Scholar 

  25. Barbosa P, Lees AJ, Magee C, Djamshidian A, Warner TT (2016) A retrospective evaluation of the frequency of impulsive compulsive behaviors in Parkinson’s disease patients treated with continuous waking day apomorphine pumps. Mov Disord Clin Pract 4(3):323–328. https://doi.org/10.1002/mdc3.12416

    Article  PubMed  PubMed Central  Google Scholar 

  26. Cilia R, Siri C, Canesi M, Zecchinelli AL, De Gaspari D, Natuzzi F, Tesei S, Meucci N, Mariani CB, Sacilotto G, Zini M, Ruffmann C, Pezzoli G (2014) Dopamine dysregulation syndrome in Parkinson’s disease: from clinical and neuropsychological characterisation to management and long-term outcome. J Neurol Neurosurg Psychiatry 85(3):311–318. https://doi.org/10.1136/jnnp-2012-303988

    Article  PubMed  Google Scholar 

  27. Rabinak CA, Nirenberg MJ (2010) Dopamine agonist withdrawal syndrome in Parkinson disease. Arch Neurol 67(1):58–63. https://doi.org/10.1001/archneurol.2009.294

    Article  PubMed  Google Scholar 

  28. Katzenschlager R (2011) Dopaminergic dysregulation syndrome in Parkinson’s disease. J Neurol Sci 310(1-2):271–275. https://doi.org/10.1016/j.jns.2011.07.012

    Article  CAS  PubMed  Google Scholar 

  29. Millan MJ, Maiofiss L, Cussac D, Audinot V, Boutin JA, Newman-Tancredi A (2002) Differential actions of antiparkinson agents at multiple classes of monoaminergic receptor. I. A multivariate analysis of the binding profiles of 14 drugs at 21 native and cloned human receptor subtypes. J Pharmacol Exp Ther 303(2):791–804. https://doi.org/10.1124/jpet.102.039867

    Article  CAS  PubMed  Google Scholar 

  30. Magennis B, Cashell A, O’Brien D, Lynch T (2012) An audit of apomorphine in the management of complex idiopathic Parkinson’s disease in Ireland. Mov Disord 27:144

    Google Scholar 

  31. Martinez-Martin P, Reddy P, Katzenschlager R, Antonini A, Todorova A, Odin P, Henriksen T, Martin A, Calandrella D, Rizos A, Bryndum N, Glad A, Dafsari HS, Timmermann L, Ebersbach G, Kramberger MG, Samuel M, Wenzel K, Tomantschger V, Storch A, Reichmann H, Pirtosek Z, Trost M, Svenningsson P, Palhagen S, Volkmann J, Chaudhuri KR (2015) EuroInf: a multicenter comparative observational study of apomorphine and levodopa infusion in Parkinson’s disease. Mov Disord 30(4):510–516. https://doi.org/10.1002/mds.26067

    Article  CAS  PubMed  Google Scholar 

  32. Todorova A, Samuel M, Brown RG, Chaudhuri KR (2015) Infusion therapies and development of impulse control disorders in advanced Parkinson disease: clinical experience after 3 years’ follow-up. Clin Neuropharmacol 38(4):132–134. https://doi.org/10.1097/WNF.0000000000000091

    Article  PubMed  Google Scholar 

  33. Catalán MJ, de Pablo-Fernández E, Villanueva C, Fernández-Diez S, Lapeña-Montero T, García-Ramos R, López-Valdés E (2013) Levodopa infusion improves impulsivity and dopamine dysregulation syndrome in Parkinson’s disease. Mov Disord 28(14):2007–2010. https://doi.org/10.1002/mds.25636

    Article  CAS  PubMed  Google Scholar 

  34. Jiménez-Jiménez FJ, Alonso-Navarro H, Valle-Arcos D (2017) Hypersexuality possibly associated with safinamide. J Clin Psychopharmacol 37(5):635–636. https://doi.org/10.1097/JCP.0000000000000762

    Article  PubMed  Google Scholar 

  35. Papay K, Xie SX, Stern M, Hurtig H, Siderowf A, Duda JE, Minger J, Weintraub D (2014) Naltrexone for impulse control disorders in Parkinson disease: a placebo-controlled study. Neurology 83(9):826–833. https://doi.org/10.1212/WNL.0000000000000729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Petkus AJ, Filoteo JV, Schiehser DM, Gomez ME, Hui JS, Jarrahi B, McEwen S, Jakowec MW, Petzinger GM (2020) Mild cognitive impairment, psychiatric symptoms, and executive functioning in patients with Parkinson’s disease. Int J Geriatr Psychiatry 35(4):396–404. https://doi.org/10.1002/gps.5255

    Article  PubMed  Google Scholar 

  37. Vitale C, Santangelo G, Trojano L, Verde F, Rocco M, Grossi D, Barone P (2011) Comparative neuropsychological profile of pathological gambling, hypersexuality, and compulsive eating in Parkinson’s disease. Mov Disord 26(5):830–836. https://doi.org/10.1002/mds.23567

    Article  PubMed  Google Scholar 

  38. Salerno L, Ramat S, Solari G, Grassi G, Pallanti S (2019) Parkinson’s disease with impulse control disorders: higher prevalence (frequency) of symptoms of attention deficit hyperactivity disorder. Int J Clin Psychiatry 7(1):1–7

    Google Scholar 

  39. Curtin K, Fleckenstein AE, Keeshin BR, Yurgelun-Todd DA, Renshaw PF, Smith KR, Hanson GR (2018) Increased risk of diseases of the basal ganglia and cerebellum in patients with a history of attention-deficit/hyperactivity disorder. Neuropsychopharmacology 43(13):2548–2555. https://doi.org/10.1038/s41386-018-0207-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Adler LA, Clemow DB, Williams DW, Durell TM (2014) Atomoxetine effects on executive function as measured by the BRIEF--a in young adults with ADHD: a randomized, double-blind, placebo-controlled study. PLoS One 9(8):104175. https://doi.org/10.1371/journal.pone.0104175

    Article  CAS  Google Scholar 

  41. Ding YS, Naganawa M, Gallezot JD, Nabulsi N, Lin SF, Ropchan J, Weinzimmer D, McCarthy TJ, Carson RE, Huang Y, Laruelle M (2014) Clinical doses of atomoxetine significantly occupy both norepinephrine and serotonin transports: implications on treatment of depression and ADHD. Neuroimage 86:164–171. https://doi.org/10.1016/j.neuroimage.2013.08.001

    Article  CAS  PubMed  Google Scholar 

  42. Yu G, Li GF, Markowitz JS (2016) Atomoxetine: a review of its pharmacokinetics and pharmacogenomics relative to drug disposition. J Child Adolesc Psychopharmacol 26(4):314–326. https://doi.org/10.1089/cap.2015.0137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kehagia AA, Housden CR, Regenthal R, Barker RA, Müller U, Rowe J, Sahakian BJ, Robbins TW (2014) Targeting impulsivity in Parkinson’s disease using atomoxetine. Brain 137(Pt 7):1986–1997. https://doi.org/10.1093/brain/awu117

    Article  PubMed  PubMed Central  Google Scholar 

  44. Borchert RJ, Rittman T, Passamonti L, Ye Z, Sami S, Jones SP, Nombela C, Vázquez Rodríguez P, Vatansever D, Rae CL, Hughes LE, Robbins TW, Rowe JB (2016) Atomoxetine enhances connectivity of prefrontal networks in Parkinson’s disease. Neuropsychopharmacology 41(8):2171–2177. https://doi.org/10.1038/npp.2016.18 Erratum in: Neuropsychopharmacology. 2016;41(8):2188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ye Z, Altena E, Nombela C, Housden CR, Maxwell H, Rittman T, Huddleston C, Rae CL, Regenthal R, Sahakian BJ, Barker RA, Robbins TW, Rowe JB (2015) Improving response inhibition in Parkinson’s disease with atomoxetine. Biol Psychiatry 77(8):740–748. https://doi.org/10.1016/j.biopsych.2014.01.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Rae CL, Nombela C, Rodríguez PV, Ye Z, Hughes LE, Jones PS, Ham T, Rittman T, Coyle-Gilchrist I, Regenthal R, Sahakian BJ, Barker RA, Robbins TW, Rowe JB (2016) Atomoxetine restores the response inhibition network in Parkinson’s disease. Brain 139(Pt 8):2235–2248. https://doi.org/10.1093/brain/aww138

    Article  PubMed  PubMed Central  Google Scholar 

  47. Marsh L, Biglan K, Gerstenhaber M, Williams JR (2009) Atomoxetine for the treatment of executive dysfunction in Parkinson’s disease: a pilot open-label study. Mov Disord 24(2):277–282. https://doi.org/10.1002/mds.22307

    Article  PubMed  PubMed Central  Google Scholar 

  48. Hinson VK, Delambo A, Elm J, Turner T (2016) A Randomized clinical trial of atomoxetine for mild cognitive impairment in Parkinson’s disease. Mov Disord Clin Pract 4(3):416–423. https://doi.org/10.1002/mdc3.12455

    Article  PubMed  PubMed Central  Google Scholar 

  49. Weintraub D, Mavandadi S, Mamikonyan E, Siderowf AD, Duda JE, Hurtig HI, Colcher A, Horn SS, Nazem S, Ten Have TR, Stern MB (2010) Atomoxetine for depression and other neuropsychiatric symptoms in Parkinson disease. Neurology 75(5):448–455. https://doi.org/10.1212/WNL.0b013e3181ebdd79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Grassi G, Micheli L, Di Cesare Mannelli L, Compagno E, Righi L, Ghelardini C, Pallanti S (2016) Atomoxetine for hoarding disorder: a pre-clinical and clinical investigation. J Psychiatr Res 83:240–248. https://doi.org/10.1016/j.jpsychires.2016.09.012

    Article  PubMed  Google Scholar 

  51. O’Sullivan SS, Djamshidian A, Evans AH, Loane CM, Lees AJ, Lawrence AD (2010) Excessive hoarding in Parkinson’s disease. Mov Disord 25(8):1026–1033. https://doi.org/10.1002/mds.23016

    Article  PubMed  Google Scholar 

  52. Storebø OJ, Krogh HB, Ramstad E, Moreira-Maia CR, Holmskov M, Skoog M, Nilausen TD, Magnusson FL, Zwi M, Gillies D, Rosendal S, Groth C, Rasmussen KB, Gauci D, Kirubakaran R, Forsbøl B, Simonsen E, Gluud C (2015) Methylphenidate for attention-deficit/hyperactivity disorder in children and adolescents: Cochrane systematic review with meta-analyses and trial sequential analyses of randomised clinical trials. BMJ 351:h5203. https://doi.org/10.1136/bmj.h5203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Espay AJ, Dwivedi AK, Payne M, Gaines L, Vaughan JE, Maddux BN, Slevin JT, Gartner M, Sahay A, Revilla FJ, Duker AP, Shukla R (2011) Methylphenidate for gait impairment in Parkinson disease: a randomized clinical trial. Neurology 76(14):1256–1262. https://doi.org/10.1212/WNL.0b013e3182143537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Moreau C, Delval A, Defebvre L, Dujardin K, Duhamel A, Petyt G, Vuillaume I, Corvol JC, Brefel-Courbon C, Ory-Magne F, Guehl D, Eusebio A, Fraix V, Saulnier PJ, Lagha-Boukbiza O, Durif F, Faighel M, Giordana C, Drapier S, Maltête D, Tranchant C, Houeto JL, Debû B, Sablonniere B, Azulay JP, Tison F, Rascol O, Vidailhet M, Destée A, Bloem BR, Bordet R, Devos D, Parkgait-II study group (2012) Methylphenidate for gait hypokinesia and freezing in patients with Parkinson’s disease undergoing subthalamic stimulation: a multicentre, parallel, randomised, placebo-controlled trial. Lancet Neurol 11(7):589–596. https://doi.org/10.1016/S1474-4422(12)70106-0

    Article  CAS  PubMed  Google Scholar 

  55. Thomas A, Bonanni L, Gambi F, Di Iorio A, Onofrj M (2010) Pathological gambling in Parkinson disease is reduced by amantadine. Ann Neurol 68(3):400–404. https://doi.org/10.1002/ana.22029

    Article  PubMed  Google Scholar 

  56. Weintraub D, Sohr M, Potenza MN, Siderowf AD, Stacy M, Voon V, Whetteckey J, Wunderlich GR, Lang AE (2010) Amantadine use associated with impulse control disorders in Parkinson disease in cross-sectional study. Ann Neurol 68(6):963–968. https://doi.org/10.1002/ana.22164

    Article  PubMed  Google Scholar 

  57. Riekkinen M, Jäkälä P, Kejonen K, Riekkinen P (1999) Jr. The alpha2 agonist, clonidine, improves spatial working performance in Parkinson’s disease. Neuroscience 92(3):983–989. https://doi.org/10.1016/s0306-4522(99)00037-8

    Article  CAS  PubMed  Google Scholar 

  58. Antonini A, Moro E, Godeiro C, Reichmann H (2018) Medical and surgical management of advanced Parkinson’s disease. Mov Disord 33(6):900–908. https://doi.org/10.1002/mds.27340

    Article  PubMed  Google Scholar 

  59. Limousin P, Foltynie T (2019) Long-term outcomes of deep brain stimulation in Parkinson disease. Nat Rev Neurol 15(4):234–242. https://doi.org/10.1038/s41582-019-0145-9

    Article  PubMed  Google Scholar 

  60. Zahodne LB, Susatia F, Bowers D, Ong TL, Jacobson CE 4th, Okun MS, Rodriguez RL, Malaty IA, Foote KD, Fernandez HH (2011) Binge eating in Parkinson’s disease: prevalence, correlates and the contribution of deep brain stimulation. J Neuropsychiatr Clin Neurosci 23(1):56–62. https://doi.org/10.1176/jnp.23.1.jnp56

    Article  Google Scholar 

  61. Smeding HM, Goudriaan AE, Foncke EM, Schuurman PR, Speelman JD, Schmand B (2007) Pathological gambling after bilateral subthalamic nucleus stimulation in Parkinson disease. J Neurol Neurosurg Psychiatry 78(5):517–519. https://doi.org/10.1136/jnnp.2006.102061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Krack P, Batir A, Van Blercom N, Chabardes S, Fraix V, Ardouin C, Koudsie A, Limousin PD, Benazzouz A, LeBas JF, Benabid AL, Pollak P (2003) Five-year follow-up of bilateral stimulation of the subthalamic nucleus in advanced Parkinson’s disease. N Engl J Med 349(20):1925–1934. https://doi.org/10.1056/NEJMoa035275

    Article  CAS  PubMed  Google Scholar 

  63. Funkiewiez A, Ardouin C, Caputo E, Krack P, Fraix V, Klinger H, Chabardes S, Foote K, Benabid AL, Pollak P (2004) Long term effects of bilateral subthalamic nucleus stimulation on cognitive function, mood, and behaviour in Parkinson’s disease. J Neurol Neurosurg Psychiatry 75(6):834–839. https://doi.org/10.1136/jnnp.2002.009803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Schüpbach WM, Chastan N, Welter ML, Houeto JL, Mesnage V, Bonnet AM, Czernecki V, Maltête D, Hartmann A, Mallet L, Pidoux B, Dormont D, Navarro S, Cornu P, Mallet A, Agid Y (2005) Stimulation of the subthalamic nucleus in Parkinson’s disease: a 5 year follow up. J Neurol Neurosurg Psychiatry 76(12):1640–1644. https://doi.org/10.1136/jnnp.2005.063206

    Article  PubMed  PubMed Central  Google Scholar 

  65. Sensi M, Eleopra R, Cavallo MA, Sette E, Milani P, Quatrale R, Capone JG, Tugnoli V, Tola MR, Granieri E, Data PG (2004) Explosive-aggressive behavior related to bilateral subthalamic stimulation. Parkinsonism Relat Disord 10(4):247–251. https://doi.org/10.1016/j.parkreldis.2004.01.007

    Article  CAS  PubMed  Google Scholar 

  66. Romito LM, Raja M, Daniele A, Contarino MF, Bentivoglio AR, Barbier A, Scerrati M, Albanese A (2002) Transient mania with hypersexuality after surgery for high frequency stimulation of the subthalamic nucleus in Parkinson’s disease. Mov Disord 17(6):1371–1374. https://doi.org/10.1002/mds.10265

    Article  PubMed  Google Scholar 

  67. Kasemsuk C, Oyama G, Hattori N (2017) Management of impulse control disorders with deep brain stimulation: a double-edged sword. J Neurol Sci 374:63–68. https://doi.org/10.1016/j.jns.2017.01.019

    Article  PubMed  Google Scholar 

  68. Merola A, Romagnolo A, Rizzi L, Rizzone MG, Zibetti M, Lanotte M, Mandybur G, Duker AP, Espay AJ, Lopiano L (2017) Impulse control behaviors and subthalamic deep brain stimulation in Parkinson disease. J Neurol 264(1):40–48. https://doi.org/10.1007/s00415-016-8314-x

    Article  CAS  PubMed  Google Scholar 

  69. Lardeux S, Baunez C (2008) Alcohol preference influences the subthalamic nucleus control on motivation for alcohol in rats. Neuropsychopharmacology 33(3):634–642. https://doi.org/10.1038/sj.npp.1301432

    Article  PubMed  Google Scholar 

  70. Eisinger RS, Urdaneta ME, Foote KD, Okun MS, Gunduz A (2018) Non-motor characterization of the basal ganglia: evidence from human and non-human primate electrophysiology. Front Neurosci 12:385. https://doi.org/10.3389/fnins.2018.00385

    Article  PubMed  PubMed Central  Google Scholar 

  71. Fluchère F, Burle B, Vidal F, van den Wildenberg W, Witjas T, Eusebio A, Azulay JP, Hasbroucq T (2018) Subthalamic nucleus stimulation, dopaminergic treatment and impulsivity in Parkinson’s disease. Neuropsychologia 117:167–177. https://doi.org/10.1016/j.neuropsychologia.2018.02.016

    Article  PubMed  Google Scholar 

  72. Pote I, Torkamani M, Kefalopoulou ZM, Zrinzo L, Limousin-Dowsey P, Foltynie T, Speekenbrink M, Jahanshahi M (2016) Subthalamic nucleus deep brain stimulation induces impulsive action when patients with Parkinson’s disease act under speed pressure. Exp Brain Res 234(7):1837–1848. https://doi.org/10.1007/s00221-016-4577-9

    Article  PubMed  PubMed Central  Google Scholar 

  73. van Wouwe NC, Pallavaram S, Phibbs FT, Martinez-Ramirez D, Neimat JS, Dawant BM, D’Haese PF, Kanoff KE, van den Wildenberg WPM, Okun MS, Wylie SA (2017) Focused stimulation of dorsal subthalamic nucleus improves reactive inhibitory control of action impulses. Neuropsychologia 99:37–47. https://doi.org/10.1016/j.neuropsychologia.2017.02.016

    Article  PubMed  PubMed Central  Google Scholar 

  74. Eusebio A, Witjas T, Cohen J, Fluchère F, Jouve E, Régis J, Azulay JP (2013) Subthalamic nucleus stimulation and compulsive use of dopaminergic medication in Parkinson’s disease. J Neurol Neurosurg Psychiatry 84(8):868–874. https://doi.org/10.1136/jnnp-2012-302387

    Article  PubMed  Google Scholar 

  75. Abbes M, Lhommée E, Thobois S, Klinger H, Schmitt E, Bichon A, Castrioto A, Xie J, Fraix V, Kistner A, Pélissier P, Seigneuret É, Chabardès S, Mertens P, Broussolle E, Moro E, Krack P (2018) Subthalamic stimulation and neuropsychiatric symptoms in Parkinson’s disease: results from a long-term follow-up cohort study. J Neurol Neurosurg Psychiatry 89(8):836–843. https://doi.org/10.1136/jnnp-2017-316373

    Article  PubMed  Google Scholar 

  76. Lhommée E, Klinger H, Thobois S, Schmitt E, Ardouin C, Bichon A, Kistner A, Fraix V, Xie J, Aya Kombo M, Chabardès S, Seigneuret E, Benabid AL, Mertens P, Polo G, Carnicella S, Quesada JL, Bosson JL, Broussolle E, Pollak P, Krack P (2012) Subthalamic stimulation in Parkinson’s disease: restoring the balance of motivated behaviours. Brain 135(Pt 5):1463–1477. https://doi.org/10.1093/brain/aws078

    Article  PubMed  Google Scholar 

  77. Ardouin C, Voon V, Worbe Y, Abouazar N, Czernecki V, Hosseini H, Pelissolo A, Moro E, Lhommée E, Lang AE, Agid Y, Benabid AL, Pollak P, Mallet L, Krack P (2006) Pathological gambling in Parkinson’s disease improves on chronic subthalamic nucleus stimulation. Mov Disord 21(11):1941–1946. https://doi.org/10.1002/mds.21098

    Article  PubMed  Google Scholar 

  78. Knobel D, Aybek S, Pollo C, Vingerhoets FJ, Berney A (2008) Rapid resolution of dopamine dysregulation syndrome (DDS) after subthalamic DBS for Parkinson disease (PD): a case report. Cogn Behav Neurol 21(3):187–189. https://doi.org/10.1097/WNN.0b013e318185e6e2

    Article  PubMed  Google Scholar 

  79. Bandini F, Primavera A, Pizzorno M, Cocito L (2007) Using STN DBS and medication reduction as a strategy to treat pathological gambling in Parkinson’s disease. Parkinsonism Relat Disord 13(6):369–371. https://doi.org/10.1016/j.parkreldis.2006.07.011

    Article  PubMed  Google Scholar 

  80. Rossi PJ, De Jesus S, Hess CW, Martinez-Ramirez D, Foote KD, Gunduz A, Okun MS (2017) Measures of impulsivity in Parkinson’s disease decrease after DBS in the setting of stable dopamine therapy. Parkinsonism Relat Disord 44:13–17. https://doi.org/10.1016/j.parkreldis.2017.08.006

    Article  PubMed  PubMed Central  Google Scholar 

  81. Lhommée E, Wojtecki L, Czernecki V, Witt K, Maier F, Tonder L, Timmermann L, Hälbig TD, Pineau F, Durif F, Witjas T, Pinsker M, Mehdorn M, Sixel-Döring F, Kupsch A, Krüger R, Elben S, Chabardès S, Thobois S, Brefel-Courbon C, Ory-Magne F, Regis JM, Maltête D, Sauvaget A, Rau J, Schnitzler A, Schüpbach M, Schade-Brittinger C, Deuschl G, Houeto JL, Krack P, EARLYSTIM study group (2018) Behavioural outcomes of subthalamic stimulation and medical therapy versus medical therapy alone for Parkinson’s disease with early motor complications (EARLYSTIM trial): secondary analysis of an open-label randomised trial. Lancet Neurol 17(3):223–231. https://doi.org/10.1016/S1474-4422(18)30035-8

    Article  PubMed  Google Scholar 

  82. Rektorová I, Anderková L (2017) Noninvasive brain stimulation and implications for nonmotor symptoms in Parkinson’s disease. Int Rev Neurobiol 134:1091–1110. https://doi.org/10.1016/bs.irn.2017.05.009

    Article  PubMed  Google Scholar 

  83. Lefaucheur JP, Antal A, Ayache SS, Benninger DH, Brunelin J, Cogiamanian F, Cotelli M, De Ridder D, Ferrucci R, Langguth B, Marangolo P, Mylius V, Nitsche MA, Padberg F, Palm U, Poulet E, Priori A, Rossi S, Schecklmann M, Vanneste S, Ziemann U, Garcia-Larrea L, Paulus W (2017) Evidence-based guidelines on the therapeutic use of transcranial direct current stimulation (tDCS). Clin Neurophysiol 128(1):56–92. https://doi.org/10.1016/j.clinph.2016.10.087

    Article  PubMed  Google Scholar 

  84. Goodwill AM, Lum JAG, Hendy AM, Muthalib M, Johnson L, Albein-Urios N, Teo WP (2017) Using non-invasive transcranial stimulation to improve motor and cognitive function in Parkinson’s disease: a systematic review and meta-analysis. Sci Rep 7(1):14840. https://doi.org/10.1038/s41598-017-13260-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Biundo R, Fiorenzato E, Antonini A (2017) Nonmotor symptoms and natural history of Parkinson’s disease: evidence from cognitive dysfunction and role of noninvasive interventions. Int Rev Neurobiol 133:389–415. https://doi.org/10.1016/bs.irn.2017.05.031

    Article  PubMed  Google Scholar 

  86. Orrù G, Baroni M, Cesari V, Conversano C, Hitchcott PK, Gemignani A (2019) The effect of single and repeated tDCS sessions on motor symptoms in Parkinson’s disease: a systematic review. Arch Ital Biol 157(2-3):89–101. https://doi.org/10.12871/00039829201925

    Article  PubMed  Google Scholar 

  87. Mi TM, Garg S, Ba F, Liu AP, Wu T, Gao LL, Dan XJ, Chan P, McKeown MJ (2019) High-frequency rTMS over the supplementary motor area improves freezing of gait in Parkinson’s disease: a randomized controlled trial. Parkinsonism Relat Disord 68:85–90. https://doi.org/10.1016/j.parkreldis.2019.10.009

    Article  PubMed  Google Scholar 

  88. Kim SJ, Paeng SH, Kang SY (2018) Stimulation in supplementary motor area versus motor cortex for freezing of gait in Parkinson’s disease. J Clin Neurol 14(3):320–326. https://doi.org/10.3988/jcn.2018.14.3.320

    Article  PubMed  PubMed Central  Google Scholar 

  89. Hanoğlu L, Saricaoglu M, Toprak G, Yılmaz NH, Yuluğ B (2020) Preliminary findings on the role of high-frequency (5 Hz) rTMS stimulation on M1 and pre-SMA regions in Parkinson’s disease. Neurosci Lett 724:134837. https://doi.org/10.1016/j.neulet.2020.134837

    Article  CAS  PubMed  Google Scholar 

  90. Trung J, Hanganu A, Jobert S, Degroot C, Mejia-Constain B, Kibreab M, Bruneau MA, Lafontaine AL, Strafella A, Monchi O (2019) Transcranial magnetic stimulation improves cognition over time in Parkinson’s disease. Parkinsonism Relat Disord 66:3–8. https://doi.org/10.1016/j.parkreldis.2019.07.006

    Article  PubMed  Google Scholar 

  91. Zhou L, Guo Z, Xing G, Peng H, Cai M, Chen H, McClure MA, He L, Xiong L, He B, Du F, Mu Q (2019) Antidepressant effects of repetitive transcranial magnetic stimulation over prefrontal cortex of Parkinson’s Disease Patients With Depression: A Meta-Analysis. Front Psych 9:769. https://doi.org/10.3389/fpsyt.2018.00769

    Article  Google Scholar 

  92. Grassi G, Figee M, Ooms P, Righi L, Nakamae T, Pallanti S, Schuurman R, Denys D (2018) Impulsivity and decision-making in obsessive-compulsive disorder after effective deep brain stimulation or treatment as usual. CNS Spectr 23(5):333–339. https://doi.org/10.1017/S1092852918000846

    Article  PubMed  Google Scholar 

  93. Pallanti S, Marras A, Grassi G (2015) Outcomes with neuromodulation in obsessive-compulsive disorder. Psychiatr Ann 45(6):316–320

    Article  Google Scholar 

  94. Madeo G, Terraneo A, Cardullo S, Gómez Pérez LJ, Cellini N, Sarlo M, Bonci A, Gallimberti L (2020) Long-term outcome of repetitive transcranial magnetic stimulation in a large cohort of patients with cocaine-use disorder: an observational study. Front Psychiatry 11:158. https://doi.org/10.3389/fpsyt.2020.00158

    Article  PubMed  PubMed Central  Google Scholar 

  95. Dobbs B, Pawlak N, Biagioni M, Agarwal S, Shaw M, Pilloni G, Bikson M, Datta A, Charvet L (2018) Generalizing remotely supervised transcranial direct current stimulation (tDCS): feasibility and benefit in Parkinson’s disease. J Neuroeng Rehabil 15:114. https://doi.org/10.1186/s12984-018-0457-9

    Article  PubMed  PubMed Central  Google Scholar 

  96. Ferrucci R, Cortese F, Bianchi M, Pittera D, Turrone R, Bocci T, Borroni B, Vergari M, Cogiamanian F, Ardolino G, Di Fonzo A, Padovani A, Priori A (2016) Cerebellar and motor cortical transcranial stimulation decrease levodopa-induced dyskinesias in Parkinson’s disease. Cerebellum 15:43–47. https://doi.org/10.1007/s12311-015-0737-x

    Article  CAS  PubMed  Google Scholar 

  97. Krause V, Wach C, Südmeyer M, Ferrea S, Schnitzler A, Pollok B (2014) Cortico-muscular coupling and motor performance are modulated by 20 Hz transcranial alternating current stimulation (tACS) in Parkinson’s disease. Front Hum Neurosci 7:928. https://doi.org/10.3389/fnhum.2013.00928

    Article  PubMed  PubMed Central  Google Scholar 

  98. Del Felice A, Castiglia L, Formaggio E, Cattelan M, Scarpa B, Manganotti P, Tenconi E, Masiero S (2019) Personalized transcranial alternating current stimulation (tACS) and physical therapy to treat motor and cognitive symptoms in Parkinson’s disease: a randomized cross-over trial. Neuroimage Clin 22:101768. https://doi.org/10.1016/j.nicl.2019.101768

    Article  PubMed  PubMed Central  Google Scholar 

  99. Manenti R, Cotelli MS, Cobelli C, Gobbi E, Brambilla M, Rusich D, Alberici A, Padovani A, Borroni B, Cotelli M (2018) Transcranial direct current stimulation combined with cognitive training for the treatment of Parkinson disease: a randomized, placebo-controlled study. Brain Stimul 11(6):1251–1262. https://doi.org/10.1016/j.brs.2018.07.046

    Article  PubMed  Google Scholar 

  100. Doruk D, Gray Z, Bravo GL, Pascual-Leone A, Fregni F (2014) Effects of tDCS on executive function in Parkinson’s disease. Neurosci Lett 582:27–31. https://doi.org/10.1016/j.neulet.2014.08.043

    Article  CAS  PubMed  Google Scholar 

  101. Cossu G, Rinaldi R, Colosimo C (2018) The rise and fall of impulse control behavior disorders. Parkinsonism Relat Disord 46(Suppl 1):S24–S29. https://doi.org/10.1016/j.parkreldis.2017.07.030

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

GG: conception and design of the paper, drafting, final approval of the version to be submitted; GA: conception and design of the paper, drafting, final approval of the version to be submitted; SR and FT: drafting, final approval of the version to be submitted; LR: revising it critically for important intellectual content, final approval of the version to be submitted

Corresponding author

Correspondence to Giacomo Grassi.

Ethics declarations

Conflict of interest

All the authors declare no competing interests.

Ethical approval

All the authors approved the manuscript.

Informed consent statement

None

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grassi, G., Albani, G., Terenzi, F. et al. New pharmacological and neuromodulation approaches for impulsive-compulsive behaviors in Parkinson’s disease. Neurol Sci 42, 2673–2682 (2021). https://doi.org/10.1007/s10072-021-05237-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-021-05237-8

Keywords

Navigation