Skip to main content

Advertisement

Log in

A review of electrophysiological studies of lower motor neuron involvement in amyotrophic lateral sclerosis

  • Review Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

A Correction to this article was published on 03 April 2019

This article has been updated

Abstract

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease involving both the upper and lower motor neuron diseases. In this review, we studied and compared different articles regarding the electrodiagnostic criteria for diagnosis of lower motor neuron pathology in ALS. We reviewed the most recent articles and metaanalysis regarding various lower motor neuron electrodiagnostic methods for ALS and their sensitivities. We concluded that Awaji Shima criteria is by far the most sensitive criteria for diagnosis of ALS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

  • 03 April 2019

    The published version of this article unfortunately contained a mistake. The sequence of authorship and the corresponding author is incorrect. The correct sequence and corresponding author is presented here.

References

  1. Willison RG (1962) Electrodiagnosis in motor neuron disease. Proc R Soc Med 55:1024–1028

    CAS  PubMed  Google Scholar 

  2. Behnia M, Kelly JJ (1991) Role of electromyography in amyotrophic lateral sclerosis. Muscle Nerve 14(12):1236–1241

    Article  CAS  PubMed  Google Scholar 

  3. Cornblath DR, Kuncl RW, Mellits ED, Quaskey SA, Clawson L, Pestronk A, Drachman DB (1992) Nerve conduction studies in amyotrophic lateral sclerosis. Muscle Nerve 15(10):1111–1115

    Article  CAS  PubMed  Google Scholar 

  4. Shefner JM, Tyler HR, Krarup C (1991) Abnormalities in the sensory action potential in patients with amyotrophic lateral sclerosis. Muscle Nerve 14(12):1242–1246

    Article  CAS  PubMed  Google Scholar 

  5. Pugdahl K, Fuglsang-Frederiksen A, Johnsen B, de Carvalho M, Fawcett PR, Labarre-Vila A et al (2008) A prospective multicentre study on sural nerve action potentials in ALS. Clin Neurophysiol 119(5):1106–1110

    Article  PubMed  Google Scholar 

  6. Isak B, Tankisi H, Johnsen B, Pugdahl K, Torvin MØLler A, Finnerup NB et al (2016) Involvement of distal sensory nerves in amyotrophic lateral sclerosis. Muscle Nerve 54(6):1086–1092

    Article  CAS  PubMed  Google Scholar 

  7. Nolano M, Provitera V, Manganelli F, Iodice R, Caporaso G, Stancanelli A et al (2017) Non-motor involvement in amyotrophic lateral sclerosis: new insight from nerve and vessel analysis in skin biopsy. Neuropathol Appl Neurobiol 43(2):119–132

    Article  CAS  PubMed  Google Scholar 

  8. de Carvalho M, Scotto M, Lopes A, Swash M (2002) F-waves and the corticospinal lesion in amyotrophic lateral sclerosis. Amyotroph Lateral Scler 3(3):131–136

    Google Scholar 

  9. Argyriou AA, Polychronopoulos P, Talelli P, Chroni E (2006) F wave study in amyotrophic lateral sclerosis: assessment of balance between upper and lower motor neuron involvement. Clin Neurophysiol 117(6):1260–1265

    Article  PubMed  Google Scholar 

  10. Petajan JH (1985) F-waves in neurogenic atrophy. Muscle Nerve 8(8):690–696

    Article  CAS  PubMed  Google Scholar 

  11. Chroni E, Tendero IS, Punga AR, Stålberg E (2012) Usefulness of assessing repeater F-waves in routine studies. Muscle Nerve 45(4):477–485

    Article  PubMed  Google Scholar 

  12. Ibrahim IK, el-Abd MA (1997) Giant repeater F-wave in patients with anterior horn cell disorders. Role of motor unit size. Am J Phys Med Rehabil 76(4):281–287

    Article  CAS  PubMed  Google Scholar 

  13. Stålberg E, Trontelj JV (1970) Demonstration of axon reflexes in human motor nerve fibres. J Neurol Neurosurg Psychiatry 33(5):571–579

    Article  PubMed  PubMed Central  Google Scholar 

  14. Shahani B, Russell WR (1969) Motor neurone disease. An abnormality of nerve metabolism. J Neurol Neurosurg Psychiatry 32(1):1–5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Dettmers C, Fatepour D, Faust H, Jerusalem F (1993) Sympathetic skin response abnormalities in amyotrophic lateral sclerosis. Muscle Nerve 16(9):930–934

    Article  CAS  PubMed  Google Scholar 

  16. Miscio G, Pisano F (1998) Sympathetic skin response in amyotrophic lateral sclerosis. Acta Neurol Scand 98(4):276–279

    Article  CAS  PubMed  Google Scholar 

  17. Oey PL, Vos PE, Wieneke GH, Wokke JH, Blankestijn PJ, Karemaker JM (2002) Subtle involvement of the sympathetic nervous system in amyotrophic lateral sclerosis. Muscle Nerve 25(3):402–408

    Article  PubMed  Google Scholar 

  18. Tackmann W, Vogel P (1988) Fibre density, amplitudes of macro-EMG motor unit potentials and conventional EMG recordings from the anterior tibial muscle in patients with amyotrophic lateral sclerosis. A study on 51 cases. J Neurol 235(3):149–154

    Article  CAS  PubMed  Google Scholar 

  19. Cappellari A, Brioschi A, Barbieri S, Braga M, Scarlato G, Silani V (1999) A tentative interpretation of electromyographic regional differences in bulbar- and limb-onset ALS. Neurology. 52(3):644–646

    Article  CAS  PubMed  Google Scholar 

  20. Gawel M, Kozakiewicz KM, Salkowska ES, Kamińska M (2014) Are we really closer to improving diagnostic sensitivity in ALS patients with Awaji criteria? Amyotrophic Lateral Scler Frontotemporal Degener 15:257–261

    Article  Google Scholar 

  21. Kuncl RW, Cornblath DR, Griffin JW (1988) Assessment of thoracic paraspinal muscles in the diagnosis of ALS. Muscle Nerve 11(5):484–492

    Article  CAS  Google Scholar 

  22. Preston DC, Shapiro BE, Raynor EM, Kothari MJ (1997) The relative value of facial, glossal, and masticatory muscles in the electrodiagnosis of amyotrophic lateral sclerosis. Muscle Nerve 20(3):370–372

    Article  CAS  PubMed  Google Scholar 

  23. Finsterer J, Fuglsang-Frederiksen A, Mamoli B (1997) Needle EMG of the tongue: motor unit action potential versus peak ratio analysis in limb and bulbar onset amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry 63(2):175–180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Finsterer J, Erdorf M, Mamoli B, Fuglsang-Frederiksen A (1998) Needle electromyography of bulbar muscles in patients with amyotrophic lateral sclerosis: evidence of subclinical involvement. Neurology 51(5):1417–1422

    Article  CAS  PubMed  Google Scholar 

  25. Li J, Petajan J, Smith G, Bromberg M (2002) Electromyography of sternocleidomastoid muscle in ALS: a prospective study. Muscle Nerve 25(5):725–728

    Article  PubMed  Google Scholar 

  26. Cho JY, Sung JJ, Min JH, Lee KW (2006) Clinical utility of trapezius muscle studies in the evaluation of amyotrophic lateral sclerosis. J Clin Neurosci 13(9):908–912

    Article  PubMed  Google Scholar 

  27. Sonoo M, Kuwabara S, Shimizu T, Komori T, Hirashima F, Inaba A, Hatanaka Y, Misawa S, Kugio Y, Tokyo Metropolitan Neuromuscular Electrodiagnosis Study Group (2009) Utility of trapezius EMG for diagnosis of amyotrophic lateral sclerosis. Muscle Nerve 39(1):63–70

    Article  Google Scholar 

  28. Xu YS, Zheng JY, Zhang S, Fan DS (2011) Upper trapezius electromyography aids in the early diagnosis of bulbar involvement in amyotrophic lateral sclerosis. Amyotroph Lateral Scler 12(5):345–348

    Article  PubMed  Google Scholar 

  29. Makki AA, Benatar M (2007) Diagnostic accuracy of thoracic paraspinal electromyography in amyotrophic lateral sclerosis. J Clin Neurophysiol 24(3):298–300

    Article  PubMed  Google Scholar 

  30. Montagna P, Liguori R, Zucconi M, Lugaresi A, Cirignotta F, Lugaresi E (1987) Fasciculations during wakefulness and sleep. Acta Neurol Scand 76(2):152–154

    Article  CAS  PubMed  Google Scholar 

  31. Wettstein A (1979) The origin of fasciculations in motoneuron disease. Ann Neurol 5(3):295–300

    Article  CAS  PubMed  Google Scholar 

  32. Conradi S, Grimby L, Lundemo G (1982) Pathophysiology o fasciculations in ALS as studied by electromyography of single motor units. Muscle Nerve 5(3):202–208

    Article  CAS  PubMed  Google Scholar 

  33. Norris FH (1965) Synchronous fasciculation in motor neuron disease. Arch Neurol 13(5):495–500

    Article  PubMed  Google Scholar 

  34. de Carvalho M (2000) Pathophysiological significance of fasciculations in the early diagnosis of ALS. Amyotroph Lateral Scler Other Motor Neuron Disord 1(Suppl 1):S43–S46

    Article  PubMed  Google Scholar 

  35. Shiga Y, Onodera H, Shimizu H, Kimura I, Ohnuma A, Itoyama Y (2000) Two consecutive fasciculation potentials having different motor unit origins are an electromyographically pathognomonic finding of ALS. Electromyogr Clin Neurophysiol 40(4):237–241

    CAS  PubMed  Google Scholar 

  36. Hirota N, Eisen A, Weber M (2000) Complex fasciculations and their origin in amyotrophic lateral sclerosis and Kennedy’s disease. Muscle Nerve 23(12):1872–1875

    Article  CAS  PubMed  Google Scholar 

  37. Mills KR (2010) Characteristics of fasciculations in amyotrophic lateral sclerosis and the benign fasciculation syndrome. Brain. 133(11):3458–3469

    Article  PubMed  Google Scholar 

  38. de Carvalho M, Swash M (2016) Fasciculation discharge frequency in amyotrophic lateral sclerosis and related disorders. Clin Neurophysiol 127:2257–2262

    Article  PubMed  Google Scholar 

  39. Lanska DJ, Raff RL (1988) Myokymia in motor neuron disease. J Neurol Neurosurg Psychiatry 51(8):1107–1108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sander HW, Aberfeld DC, Chokroverty S (1999) Tongue and limb myokymia in amyotrophic lateral sclerosis. Neurology. 53(8):1889–1891

    Article  CAS  PubMed  Google Scholar 

  41. Whaley NR, Rubin DI (2010) Myokymic discharges in amyotrophic lateral sclerosis (ALS): a rare electrophysiologic finding? Muscle Nerve 41(1):107–109

    Article  PubMed  Google Scholar 

  42. Stålberg E, Thiele B (1972) Transmission block in terminal nerve twigs: a single fibre electromyographic finding in man. J Neurol Neurosurg Psychiatry 35(1):52–59

    Article  PubMed  PubMed Central  Google Scholar 

  43. Stålberg EV, Sonoo M (1994) Assessment of variability in the shape of the motor unit action potential, the “jiggle,” at consecutive discharges. Muscle Nerve 17(10):1135–1144

    Article  PubMed  Google Scholar 

  44. McComas AJ, Fawcett PR, Campbell MJ, Sica RE (1971) Electrophysiological estimation of the number of motor units within a human muscle. J Neurol Neurosurg Psychiatry 34(2):121–131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bromberg MB, Forshew DA, Nau KL, Bromberg J, Simmons Z, Fries TJ (1993) Motor unit number estimation, isometric strength, and electromyographic measures in amyotrophic lateral sclerosis. Muscle Nerve 16(11):1213–1219

    Article  CAS  PubMed  Google Scholar 

  46. Van Dijk JP, Zwarts MJ, Schelhaas HJ, Stegeman DF (2008) Effect of small motor unit potentials on the motor unit number estimate. Muscle Nerve 38(1):887–892

    Article  PubMed  Google Scholar 

  47. Sartucci F, Maritato P, Moscato G, Orlandi G, Calabrese R, Domenici GL, Murri L (2007) Motor unit number estimation (MUNE) as a quantitative measure of disease progression and motor unit reorganization in amyotrophic lateral sclerosis. Int J Neurosci 117(9):1229–1236

    Article  CAS  PubMed  Google Scholar 

  48. de Carvalho M, Scotto M, Lopes A, Swash M (2005) Quantitating progression in ALS. Neurology 64(10):1783–1785

    Article  PubMed  Google Scholar 

  49. McComas AJ, Sica RE, Brandstater ME (1977) Further motor unit studies in Duchenne muscular dystrophy. J Neurol Neurosurg Psychiatry 40(12):1147–1151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Bromberg MB (1998) Electrodiagnostic studies in clinical trials for motor neuron disease. J Clin Neurophysiol 15(2):117–128

    Article  CAS  PubMed  Google Scholar 

  51. Doherty TJ, Brown WF (1993) The estimated numbers and relative sizes of thenar motor units as selected by multiple point stimulation in young and older adults. Muscle Nerve 16(4):355–366

    Article  CAS  PubMed  Google Scholar 

  52. Shefner JM, Watson ML, Simionescu L, Caress JB, Burns TM, Maragakis NJ, Benatar M, David WS, Sharma KR, Rutkove SB (2011) Multipoint incremental motor unit number estimation as an outcome measure in ALS. Neurology. 77(3):235–241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Felice KJ (1997) A longitudinal study comparing thenar motor unit number estimates to other quantitative tests in patients with amyotrophic lateral sclerosis. Muscle Nerve 20(2):179–185

    Article  CAS  PubMed  Google Scholar 

  54. Wang FC, Delwaide PJ (1998) Number and relative size of thenar motor units in ALS patients: application of the adapted multiple point stimulation method. Electroencephalogr Clin Neurophysiol 109(1):36–43

    Article  CAS  PubMed  Google Scholar 

  55. Gooch CL, Pullman SL, Shungu DC, Uluğ AM, Chane S, Gordon PH, Tang MX, Mao X, Rowland LP, Mitsumoto H (2009) Motor unit number estimation (MUNE) in diseases of the motor neuron: utility and comparative analysis in a multimodal biomarker study. Suppl Clin Neurophysiol 60:153–162

    Article  PubMed  Google Scholar 

  56. Strong MJ, Brown WF, Hudson AJ, Snow R (1988) Motor unit estimates in the biceps-brachialis in amyotrophic lateral sclerosis. Muscle Nerve 11(5):415–422

    Article  CAS  PubMed  Google Scholar 

  57. Bromberg MB, Abrams JL (1995) Sources of error in the spike-triggered averaging method of motor unit number estimation (MUNE). Muscle Nerve 18(10):1139–1146

    Article  CAS  PubMed  Google Scholar 

  58. Boe SG, Stashuk DW, Doherty TJ (2007) Motor unit number estimates and quantitative motor unit analysis in healthy subjects and patients with amyotrophic lateral sclerosis. Muscle Nerve 36(1):62–70

    Article  PubMed  Google Scholar 

  59. Daube JR (1995) Estimating the number of motor units in a muscle. J Clin Neurophysiol 12(6):585–594

    Article  CAS  PubMed  Google Scholar 

  60. Aggarwal A, Nicholson G (2002) Detection of preclinical motor neurone loss in SOD1 mutation carriers using motor unit number estimation. J Neurol Neurosurg Psychiatry 73(2):199–201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Shefner JM, Cudkowicz ME, Zhang H, Schoenfeld D, Jillapalli D, Northeast ALS Consortium (2004) The use of statistical MUNE in a multicenter clinical trial. Muscle Nerve 30(4):463–469

    Article  CAS  PubMed  Google Scholar 

  62. Shefner JM, Cudkowicz ME, Zhang H, Schoenfeld D, Jillapalli D, Northeast ALS Consortium (2007) Revised statistical motor unit number estimation in the celecoxib/ALS trial. Muscle Nerve 35(2):228–234

    Article  CAS  PubMed  Google Scholar 

  63. Hong YH, Sung JJ, Park KS, Kwon O, Min JH, Lee KW (2007) Statistical MUNE: a comparison of two methods of setting recording windows in healthy subjects and ALS patients. Clin Neurophysiol 118(12):2605–2611

    Article  PubMed  Google Scholar 

  64. Major LA, Chan KM, Bostock H, Jones KE (2009) Change in excitability of motor axons modifies statistical MUNE results. Suppl Clin Neurophysiol 60:27–37.65

    Article  PubMed  Google Scholar 

  65. Jacobsen AB, Bostock H, Fuglsang-Fredriksen A, Duez L, Beniczky S, Moller AT et al (2017) Reproducibility and sensitivity to motor unit loss in amyotrophic lateral sclerosis, of a novel MUNE method: MscanFit MUNE. Clin Neurophysiol 128(7):1380–1388

    Article  CAS  PubMed  Google Scholar 

  66. Nandedkar SD, Nandedkar DS, Barkhaus PE, Stalberg EV (2004) Motor unit number index (MUNIX). IEEE Trans Biomed Eng 51(12):2209–2211

    Article  PubMed  Google Scholar 

  67. Benmouna K, Milants C, Wang FC (2017) Correlation between MUNIX and adapted multiple point stimulation MUNE methods. Clin Neurophysiol 129(2):341–344

    Article  PubMed  Google Scholar 

  68. Nandedkar SD, Barkhaus PE, Stålberg EV (2010) Motor unit number index (MUNIX): principle, method, and findings in healthy subjects and in patients with motor neuron disease. Muscle Nerve 42(5):798–807

    Article  PubMed  Google Scholar 

  69. Ahn SW, Kim SH, Kim JE, Kim SM, Kim SH, Park KS, Sung JJ, Lee KW, Hong YH (2010) Reproducibility of the motor unit number index (MUNIX) in normal controls and amyotrophic lateral sclerosis patients. Muscle Nerve 42(5):808–813

    Article  PubMed  Google Scholar 

  70. Fathi D, Mohammadi B, Dengler R, Boselt S, Petri S, Kollewe K (2016) Lower motor neuron involvement in ALS cases assessed by motor unit number index (MUNIX): long-term changes and reproducibility. Clin Neurophysiol 127(4):1984–1988

    Article  PubMed  Google Scholar 

  71. Grimaldi S, Duprat L, Grapperon AM, Verschueren A, Delmont E, Attarian S (2017) Global motor unit number index sum scores for assessing the loss of lower motor neurons in amyotrophic lateral sclerosis. Muscle Nerve 56(2):202–206

    Article  PubMed  Google Scholar 

  72. Neuwirth C, Nandedkar S, Stålberg E, Barkhaus PE, de Carvalho M, Furtula J, Dijk JP, Baldinger R, Castro J, Costa J, Otto M, Sandberg A, Weber M (2011) Motor unit number index (MUNIX): a novel neurophysiological marker for neuromuscular disorders; test-retest reliability in healthy volunteers. Clin Neurophysiol 122(9):1867–1872

    Article  PubMed  Google Scholar 

  73. Neurwith C, Barkhaus PE, Burkhardt C, Castro J, Czell D, de Carvalho M et al (2017) Motor unit number index (MUNIX) detects motor neuron loss in pre-symptomatic muscles in amyotrophic lateral sclerosis. Clin Neurophysiol 128(3):495–500

    Article  Google Scholar 

  74. Brooks BR (1994) El Escorial World Federation of Neurology criteria for the diagnosis of amyotrophic lateral sclerosis. J Neurol Sci 124(Suppl):96–107

    Article  PubMed  Google Scholar 

  75. Yuen EC, Olney RK (1997) Longitudinal study of fiber density and motor unit number estimate in patients with amyotrophic lateral sclerosis. Neurology 49(2):573–578

    Article  CAS  PubMed  Google Scholar 

  76. Henderson RD, McCombe PA (2017) Assessment of motor units in neuromuscular disease. Neurotherapeutics 14:69–77

    Article  CAS  PubMed  Google Scholar 

  77. Lambert EH, Mulder DW (1957) Electromyographic studies in amyotrophic lateral sclerosis. Proc Mayo Clin 32(17):441–446

    CAS  Google Scholar 

  78. Ross MA, Miller RG, Berchert L, Parry G, Barohn RJ, Armon C, Bryan WW, Petajan J, Stromatt S, Goodpasture J, McGuire D (1998) Toward earlier diagnosis of amyotrophic lateral sclerosis: revised criteria. rhCNTF ALS Study Group. Neurology 50(3):768–772

    Article  CAS  PubMed  Google Scholar 

  79. Chaudhuri KR, Crump S, Sal-Sarraj S, Anderson V, Cavanagh J, Leigh PN (1995) The validation of El Escorial criteria for the diagnosis of amyotrophic lateral sclerosis: a clinicopathological study. J Neurol Sci 129(Suppl):11–12

    Article  PubMed  Google Scholar 

  80. Brooks BR, Miller RG, Swash M, Munsat TL, World Federation of Neurology Research Group on Motor Neuron Diseases (2000) El Escorial revisited: revised criteria for the diagnosis of amyotrophic lateral sclerosis. Amyotroph Lateral Scler Other Motor Neuron Disord 1(5):293–299

    Article  CAS  PubMed  Google Scholar 

  81. Nodera H, Izami Y, Kaji R (2007) New diagnostic criteria of ALS. Brain Nerve 69(10):1023–1029

    Google Scholar 

  82. de Carvalho M, Swash M (2009) Awaji diagnostic algorithm increases sensitivity of El Escorial criteria for ALS disease. Amyotroph Lateral Scler 1:53–57

    Article  Google Scholar 

  83. Bresch S, Delmont E, Soriani MH, Desnuelle C (2014) Electrodiagnostic criteria for early diagnosis of bulbar-onset ALS: a comparison of El Escorial, revised El Escorial and Awaji algorithm. Rev Neurol (Paris) 170(2):134–139

    Article  CAS  Google Scholar 

  84. Douglass CP, Kandler RH, Shaw PJ, McDermott CJ (2010) An evaluation of neurophysiological criteria used in the diagnosis of motor neuron disease. J Neurol Neurosurg Psychiatry 81(6):646–649

    Article  CAS  PubMed  Google Scholar 

  85. Schrooten M, Smetcoren C, Robberecht W, Van Damme P (2011) Benefit of the Awaji diagnostic algorithm for amyotrophic lateral sclerosis: a prospective study. Ann Neurol 70(1):79–83

    Article  PubMed  Google Scholar 

  86. Li DW, Liu M, Cui B, Fang J, Guan YZ, Ding Q, Li X, Cui L (2017) The Awaji criteria increases the diagnostic sensitivity of the revised El Escorial criteria for amyotrophic lateral sclerosis diagnosis in a Chinese population. PLOS ONE. https://doi.org/10.1371/journal.pone.0171522

  87. Okita T, Nodera H, Shibuta Y, Nodera A, Asanuma K, Shimatani Y, Sato K, Izumi Y, Kaji R (2011) Can Awaji ALS criteria provide earlier diagnosis than the revised El Escorial criteria? J Neurol Sci 302(1–2):29–32

    Article  PubMed  Google Scholar 

  88. Boekestein WA, Kleine BU, Hageman G, Schelhaas HJ, Zwarts MJ (2010) Sensitivity and specificity of the ‘Awaji’ electrodiagnostic criteria for amyotrophic lateral sclerosis: retrospective comparison of the Awaji and revised El Escorial criteria for ALS. Amyotroph Lateral Scler 11(6):497–501

    Article  PubMed  Google Scholar 

  89. Noto Y, Misawa S, Kanai K, Shibuya K, Isose S, Nasu S, Sekiguchi Y, Fujimaki Y, Nakagawa M, Kuwabara S (2012) Awaji ALS criteria increase the diagnostic sensitivity in patients with bulbar onset. Clin Neurophysiol 123(2):382–385

    Article  PubMed  Google Scholar 

  90. Chen A, Weimer L, Brannagan T 3rd, Colin M, Andrews J, Mitsumoto H, Kaufmann P (2010) Experience with the Awaji Island modifications to the ALS diagnostic criteria. Muscle Nerve 42(5):831–832

    Article  PubMed  Google Scholar 

  91. Costa J, Swash M, de Carvalho M (2012) Awaji criteria for the diagnosis of amyotrophic lateral sclerosis: a systematic review. Arch Neurol 69(11):1410–1416

    Article  PubMed  Google Scholar 

  92. Jang JS, Bae JS (2015) Awaji criteria are not always superior to previous criteria: a meta-analysis. Muscle Nerve:822–829

  93. Higashihara M, Sonoo M, Imafuku I, Fukutake T, Kamakura K, Inoue K, Hatanaka Y, Shimizu T, Tsuji S, Ugawa Y (2012) Fasciculation potentials in amyotrophic lateral sclerosis and the diagnostic yield of the Awaji algorithm. Muscle Nerve 45(2):175–182

    Article  PubMed  Google Scholar 

  94. Geevasinga N, Loy CT, Menon P, de Carvalho M, Schrooten M et al (2016) Awaji criteria improves the diagnostic sensitivity in amyotrophic lateral sclerosis: a systematic review using individual patient data. Clin Neurophysiol 127(7):2684–2691

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Amin Lari.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amin Lari, A., Ghavanini, A.A. & Bokaee, H.R. A review of electrophysiological studies of lower motor neuron involvement in amyotrophic lateral sclerosis. Neurol Sci 40, 1125–1136 (2019). https://doi.org/10.1007/s10072-019-03832-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-019-03832-4

Keywords

Navigation