Skip to main content

Advertisement

Log in

Circulating miR-126 and miR-130a levels correlate with lower disease risk, disease severity, and reduced inflammatory cytokine levels in acute ischemic stroke patients

  • Original Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

To investigate the correlations of five angiogenesis-related miRNA (miR-126, miR-130a, miR-222, miR-218, and miR-185) expression levels with risk, severity, and inflammatory cytokines levels in acute ischemic stroke (AIS) patients. A total of 148 AIS patients and 148 age- and gender-matched controls were consecutively enrolled. Blood samples were collected from AIS patients and controls, and plasma was separated for miRNAs and cytokine level detection. Plasma levels of miRNAs were evaluated by real-time qPCR method, and inflammatory cytokine levels were detected using an enzyme-linked immunosorbent assay (ELISA). Plasma miR-126 and miR-130a expression levels in AIS patients were lower than those of controls, while the levels of miR-222, miR-218, and miR-185 were elevated in AIS patients compared with controls. After pooling the five miRNA expression levels together, the area under the curve (AUC) for predicting AIS risk was 0.840 (95% CI 0.795–0.885) with a sensitivity of 83.8% and a specificity of 69.6% at the best cut-off point. Plasma miR-126 (r = − 0.402, P < 0.001) and miR-130a (r = − 0.161, P = 0.050) levels were negatively correlated with NIHSS scores, while plasma miR-218 level was positively correlated with NIHSS scores (r = 0.471, P < 0.001). Most importantly, plasma miR-126 expression was negatively correlated with TNF-α (r = − 0.168, P = 0.041), IL-1β (r = − 0.246, P = 0.003), and IL-6 (r = − 0.147, P = 0.035) levels, while miR-130a expression was negatively correlated with TNF-α (r = − 0.287, P < 0.001), IL-1β (r = − 0.168, P = 0.041), and IL-6 (r = − 0.239, P = 0.003) expression levels and positively associated with IL-10 level (r = 0.261, P = 0.001). Circulating miR-126 and miR-130a levels correlate with lower disease risk, decreased disease severity, and reduced inflammatory cytokine levels in AIS patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hankey GJ (2017) Stroke. Lancet 389(10069):641–654. https://doi.org/10.1016/S0140-6736(16)30962-X

    Article  PubMed  Google Scholar 

  2. Feigin VL, Forouzanfar MH, Krishnamurthi R, Mensah GA, Connor M, Bennett DA, Moran AE, Sacco RL, Anderson L, Truelsen T, O'Donnell M, Venketasubramanian N, Barker-Collo S, Lawes CM, Wang W, Shinohara Y, Witt E, Ezzati M, Naghavi M, Murray C, Global Burden of Diseases I, Risk Factors S, the GBDSEG (2014) Global and regional burden of stroke during 1990–2010: findings from the Global Burden of Disease Study 2010. Lancet 383(9913):245–254

    Article  PubMed  PubMed Central  Google Scholar 

  3. Krishnamurthi RV, Feigin VL, Forouzanfar MH, Mensah GA, Connor M, Bennett DA, Moran AE, Sacco RL, Anderson LM, Truelsen T, O'Donnell M, Venketasubramanian N, Barker-Collo S, Lawes CM, Wang W, Shinohara Y, Witt E, Ezzati M, Naghavi M, Murray C, Global Burden of Diseases IRFS, Group GBDSE (2013) Global and regional burden of first-ever ischaemic and haemorrhagic stroke during 1990–2010: findings from the Global Burden of Disease Study 2010. Lancet Glob Health 1(5):e259–e281. https://doi.org/10.1016/S2214-109X(13)70089-5

    Article  PubMed  PubMed Central  Google Scholar 

  4. Kilburg C, Scott McNally J, de Havenon A, Taussky P, Kalani MY, Park MS (2017) Advanced imaging in acute ischemic stroke. Neurosurg Focus 42(4):E10. https://doi.org/10.3171/2017.1.FOCUS16503

    Article  PubMed  Google Scholar 

  5. Sacco RL, Kasner SE, Broderick JP, Caplan LR, Connors JJ, Culebras A, Elkind MS, George MG, Hamdan AD, Higashida RT, Hoh BL, Janis LS, Kase CS, Kleindorfer DO, Lee JM, Moseley ME, Peterson ED, Turan TN, Valderrama AL, Vinters HV, American Heart Association Stroke Council CoCS, Anesthesia, Council on Cardiovascular R, Intervention, Council on C, Stroke N, Council on E, Prevention, Council on Peripheral Vascular D, Council on Nutrition PA, Metabolism (2013) An updated definition of stroke for the 21st century: a statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 44(7):2064–2089. https://doi.org/10.1161/STR.0b013e318296aeca

    Article  PubMed  Google Scholar 

  6. Fisher M, Albers GW (2013) Advanced imaging to extend the therapeutic time window of acute ischemic stroke. Ann Neurol 73(1):4–9. https://doi.org/10.1002/ana.23744

    Article  PubMed  Google Scholar 

  7. Dong H, Lei J, Ding L, Wen Y, Ju H, Zhang X (2013) MicroRNA: function, detection, and bioanalysis. Chem Rev 113(8):6207–6233. https://doi.org/10.1021/cr300362f

    Article  CAS  PubMed  Google Scholar 

  8. Maitrias P, Metzinger-Le Meuth V, Nader J, Reix T, Caus T, Metzinger L (2017) The involvement of miRNA in carotid-related stroke. Arterioscler Thromb Vasc Biol 37(9):1608–1617. https://doi.org/10.1161/ATVBAHA.117.309233

    Article  CAS  PubMed  Google Scholar 

  9. Che F, Du H, Zhang W, Cheng Z, Tong Y (2018) MicroRNA-132 modifies angiogenesis in patients with ischemic cerebrovascular disease by suppressing the NFkappaB and VEGF pathway. Mol Med Rep 17(2):2724–2730. https://doi.org/10.3892/mmr.2017.8138

    Article  CAS  PubMed  Google Scholar 

  10. Majdi A, Mahmoudi J, Sadigh-Eteghad S, Farhoudi M, Shotorbani SS (2016) The interplay of microRNAs and post-ischemic glutamate excitotoxicity: an emergent research field in stroke medicine. Neurol Sci 37(11):1765–1771. https://doi.org/10.1007/s10072-016-2643-5

    Article  PubMed  Google Scholar 

  11. Zhou Y, Deng L, Zhao D, Chen L, Yao Z, Guo X, Liu X, Lv L, Leng B, Xu W, Qiao G, Shan H (2016) MicroRNA-503 promotes angiotensin II-induced cardiac fibrosis by targeting Apelin-13. J Cell Mol Med 20(3):495–505. https://doi.org/10.1111/jcmm.12754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Liang TY, Lou JY (2016) Increased expression of mir-34a-5p and Clinical Association in Acute Ischemic Stroke Patients and in a rat model. Med Sci Monit 22:2950–2955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Jin F, Xing J (2017) Circulating pro-angiogenic and anti-angiogenic microRNA expressions in patients with acute ischemic stroke and their association with disease severity. Neurol Sci 38(11):2015–2023. https://doi.org/10.1007/s10072-017-3071-x

    Article  PubMed  Google Scholar 

  14. van Solingen C, Seghers L, Bijkerk R, Duijs JM, Roeten MK, van Oeveren-Rietdijk AM, Baelde HJ, Monge M, Vos JB, de Boer HC, Quax PH, Rabelink TJ, van Zonneveld AJ (2009) Antagomir-mediated silencing of endothelial cell specific microRNA-126 impairs ischemia-induced angiogenesis. J Cell Mol Med 13(8A):1577–1585. https://doi.org/10.1111/j.1582-4934.2008.00613.x

    Article  CAS  PubMed  Google Scholar 

  15. Kong F, Zhou J, Zhou W, Guo Y, Li G, Yang L (2017) Protective role of microRNA-126 in intracerebral hemorrhage. Mol Med Rep 15(3):1419–1425. https://doi.org/10.3892/mmr.2017.6134

    Article  CAS  PubMed  Google Scholar 

  16. Chen Y, Gorski DH (2008) Regulation of angiogenesis through a microRNA (miR-130a) that down-regulates antiangiogenic homeobox genes GAX and HOXA5. Blood 111(3):1217–1226. https://doi.org/10.1182/blood-2007-07-104133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Poliseno L, Tuccoli A, Mariani L, Evangelista M, Citti L, Woods K, Mercatanti A, Hammond S, Rainaldi G (2006) MicroRNAs modulate the angiogenic properties of HUVECs. Blood 108(9):3068–3071. https://doi.org/10.1182/blood-2006-01-012369

    Article  CAS  PubMed  Google Scholar 

  18. Li Y, Song YH, Li F, Yang T, Lu YW, Geng YJ (2009) MicroRNA-221 regulates high glucose-induced endothelial dysfunction. Biochem Biophys Res Commun 381(1):81–83. https://doi.org/10.1016/j.bbrc.2009.02.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Guan B, Wu K, Zeng J, Xu S, Mu L, Gao Y, Wang K, Ma Z, Tian J, Shi Q, Guo P, Wang X, He D, Du Y (2017) Tumor-suppressive microRNA-218 inhibits tumor angiogenesis via targeting the mTOR component RICTOR in prostate cancer. Oncotarget 8(5):8162–8172. https://doi.org/10.18632/oncotarget.14131

    Article  PubMed  Google Scholar 

  20. Han S, Kong YC, Sun B, Han QH, Chen Y, Wang YC (2016) microRNA-218 inhibits oxygen-induced retinal neovascularization via reducing the expression of roundabout 1. Chin Med J 129(6):709–715. https://doi.org/10.4103/0366-6999.178013

    Article  PubMed  PubMed Central  Google Scholar 

  21. Hou J, Liu L, Zhu Q, Wu Y, Tian B, Cui L, Liu Y, Li X (2016) MicroRNA-185 inhibits angiogenesis in human microvascular endothelial cells through targeting stromal interaction molecule 1. Cell Biol Int 40(3):318–328. https://doi.org/10.1002/cbin.10572

    Article  CAS  PubMed  Google Scholar 

  22. Anrather J, Iadecola C (2016) Inflammation and stroke: an overview. Neurotherapeutics 13(4):661–670. https://doi.org/10.1007/s13311-016-0483-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Esenwa CC, Elkind MS (2016) Inflammatory risk factors, biomarkers and associated therapy in ischaemic stroke. Nat Rev Neurol 12(10):594–604. https://doi.org/10.1038/nrneurol.2016.125

    Article  CAS  PubMed  Google Scholar 

  24. Khoshnam SE, Winlow W, Farzaneh M (2017) The interplay of MicroRNAs in the inflammatory mechanisms following ischemic stroke. J Neuropathol Exp Neurol 76(7):548–561. https://doi.org/10.1093/jnen/nlx036

    Article  PubMed  Google Scholar 

  25. Huang L, Ma Q, Li Y, Li B, Zhang L (2018) Inhibition of microRNA-210 suppresses pro-inflammatory response and reduces acute brain injury of ischemic stroke in mice. Exp Neurol 300:41–50. https://doi.org/10.1016/j.expneurol.2017.10.024

    Article  CAS  PubMed  Google Scholar 

  26. Yang HH, Chen Y, Gao CY, Cui ZT, Yao JM (2017) Protective effects of microRNA-126 on human cardiac microvascular endothelial cells against hypoxia/reoxygenation-induced injury and inflammatory response by activating PI3K/Akt/eNOS signaling pathway. Cell Physiol Biochem 42(2):506–518. https://doi.org/10.1159/000477597

    Article  CAS  PubMed  Google Scholar 

  27. Li ZC, Han N, Li X, Li G, Liu YZ, Sun GX, Wang Y, Chen GT, Li GF (2015) Decreased expression of microRNA-130a correlates with TNF-alpha in the development of osteoarthritis. Int J Clin Exp Pathol 8(3):2555–2564

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Zheng H, Dong X, Liu N, Xia W, Zhou L, Chen X, Yang Z, Chen X (2016) Regulation and mechanism of mouse miR-130a/b in metabolism-related inflammation. Int J Biochem Cell Biol 74:72–83. https://doi.org/10.1016/j.biocel.2016.02.021

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fuqiang Jin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

This study was approved by the Ethics Committee of Cangzhou Central Hospital, and all participants or direct family members signed the written informed consents.

Electronic supplementary material

ESM 1

(PDF 534 kb)

ESM 2

(PDF 152 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, F., Xing, J. Circulating miR-126 and miR-130a levels correlate with lower disease risk, disease severity, and reduced inflammatory cytokine levels in acute ischemic stroke patients. Neurol Sci 39, 1757–1765 (2018). https://doi.org/10.1007/s10072-018-3499-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-018-3499-7

Keywords

Navigation