Skip to main content

Advertisement

Log in

Taurine ameliorates neurobehavioral, neurochemical and immunohistochemical changes in sporadic dementia of Alzheimer’s type (SDAT) caused by intracerebroventricular streptozotocin in rats

  • Original Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

Oxidative loads in the brain are involved in age related impairments like learning and memory as well as neurodegeneration. Taurine, the most abundant free amino acid in humans has many potential health benefits through its anti-oxidant and anti-inflammatory properties. Therefore, we investigated the neuroprotective potential of taurine on oxidative stress, neuronal loss and memory impairments in streptozotocin model of cognitive impairments in rats. The cognitive impairment was developed by giving single intracerebroventricular (ICV) injection of streptozotocin (STZ) 3 mg/kg body weight bilaterally. An increased latency and path length was observed in ICV-STZ group animals as compared to sham group animals and these were inhibited significantly in STZ group pre-treated with taurine (50 mg/kg body weight orally once daily for 15 days). Moreover, the significantly depleted content of GSH and elevated level of thiobarbituric acid reactive substances (TBARS) in ICV-STZ group animals were protected significantly with pre-treatment of taurine. The activity of antioxidant enzymes, glutathione peroxidase, glutathione reductase, glutathione-S-transferase, catalase, and superoxide dismutase was decreased in STZ group as compared to sham group and pre-treatment of STZ group with taurine has protected their activities significantly. Furthermore, the increased activity of acetylcholine esterase and decreased expression of choline acetyl transferase were attenuated by the pre-treatment of taurine. Taurine also protected the morphology of the hippocampal pyramidal neurons. This study concludes that the prophylactic intervention of taurine may be used to prevent the deterioration of cognitive functions and neurobehavioral activities, often associated with the generation of free radicals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Blennow K, de Leon MJ, Zetterberg H (2006) Alzheimer’s disease. Lancet 368:387–403

    Article  PubMed  CAS  Google Scholar 

  2. Zou Y, Hong B, Fan L, Zhou L, Liu Y, Wu Q, Zhang X, Dong M (2012) Protective effect of puerarin against beta-amyloid-induced oxidative stress in neuronal cultures from rat hippocampus: involvement of the GSK-3β/Nrf2 signaling pathway. Free Radic Res. doi:10:742518.3109/10715762

    Google Scholar 

  3. West MJ, Coleman PD, Flood DG, Troncoso JC (1994) Differences in the pattern of hippocampal neuronal loss in normal ageing and Alzheimer’s disease. Lancet 344:769–772

    Article  PubMed  CAS  Google Scholar 

  4. Yang NC, Lin HC, Wu JH, Ou HC, Chai YC, Tseng CY, Liao JW, Song TY (2012) Ergothioneine protects against neuronal injury induced by β-amyloid in mice. Food Chem Toxicol 50:3902–3911

    Article  PubMed  CAS  Google Scholar 

  5. Santos TD, Mazucanti CH, Xavier GF, Torrão AD (2012) Early and late neurodegeneration and memory disruption after intracerebroventricular streptozotocin. Physiol Behav 107:401–413

    Article  PubMed  CAS  Google Scholar 

  6. Jee YS, Ko IG, Sung YH, Lee JW, Kim YS, Kim SE, Kim BK, Seo JH, Shin MS, Lee HH, Cho HJ, Kim CJ (2008) Effects of treadmill exercise on memory and c-Fos expression in the hippocampus of the rats with intracerebroventricular injection of streptozotocin. Neurosci Lett 443:188–192

    Article  PubMed  CAS  Google Scholar 

  7. Hoyer S, Lannert H (2008) Long-term effects of corticosterone on behavior, oxidative and energy metabolism of parietotemporal cerebral cortex and hippocampus of rats: comparison to intracerebroventricular streptozotocin. J Neural Transm 115:1241–1249

    Article  PubMed  CAS  Google Scholar 

  8. Ishrat T, Khan MB, Hoda MN, Yousuf S, Ahmad M, Ansari MA, Ahmad AS, Islam F (2006) Coenzyme Q10 modulates cognitive impairment against intracerebroventricular injection of streptozotocin in rats. Behav Brain Res 171:9–16

    Article  PubMed  CAS  Google Scholar 

  9. Khan MB, Khan MM, Khan A, Ahmed ME, Ishrat T, Tabassum R, Vaibhav K, Ahmad A, Islam F (2012) Naringenin ameliorates Alzheimer’s disease (AD)-type neurodegeneration with cognitive impairment (AD-TNDCI) caused by the intracerebroventricular-streptozotocin in rat model. Neurochem Int. pii:S0197-0186(12): 00251-3

    Google Scholar 

  10. Mayer G, Nitsch R, Hoyer S (1990) Effects of changes in peripheral and cerebral glucose metabolism on locomotor activity, learning and memory in adult male rats. Brain Res 532:95–100

    Article  PubMed  CAS  Google Scholar 

  11. Lester-Coll N, Rivera EJ, Soscia SJ, Doiron K, Wands JR, de la Monte SM (2006) Intracerebral streptozotocin model of type 3 diabetes: relevance to sporadic Alzheimer’s disease. J Alzheimers Dis 9:13–33

    PubMed  CAS  Google Scholar 

  12. Ponce-Lopez T, Liy-Salmeron G, Hong E, Meneses A (2011) Lithium, phenserine, memantine and pioglitazone reverse memory deficit and restore phospho-GSK3β decreased in hippocampus in intracerebroventricular streptozotocin induced memory deficit model. Brain Res 1426:73–85

    Article  PubMed  CAS  Google Scholar 

  13. Salkovic-Petrisic M (2008) Amyloid cascade hypothesis: is it true for sporadic Alzheimer’s diseases. Periodicum Biolgorum 110:17–25

    CAS  Google Scholar 

  14. Blokland A, Prickaerts J, Raaijmakers W (1993) Absence of impairments in spatial and temporal discrimination learning in Lewis rats after chronic ethanol consumption. Pharmacol Biochem Behav 46:27–34

    Article  PubMed  CAS  Google Scholar 

  15. Guidotti A, Badiani G, Pepeu G (1972) Taurine distribution in cat brain. J Neurochem 19:431–435

    Article  PubMed  CAS  Google Scholar 

  16. Moran J, Salazar P, Pasantes-Morales H (1987) Effect of tocopherol and taurine on membrane fluidity of retinal rod outer segments. Exp Eye Res 45:769–776

    Article  PubMed  CAS  Google Scholar 

  17. Okamoto K, Kimura H, Sakai Y (1983) Taurine-induced increase of the Cl conductance of cerebellar Purkinje cell dendrites in vitro. Brain Res 259:319–323

    Article  PubMed  CAS  Google Scholar 

  18. Satoh H, Sperelakis N (1998) Review of some actions of taurine on ion channels of cardiac muscle cells and others. Gen Pharmacol 30:451–463

    Article  PubMed  CAS  Google Scholar 

  19. Chen WQ, Jin H, Nguyen M, Carr J, Lee YJ, Hsu CC, Faiman MD, Schloss JV, Wu JY (2001) Role of taurine in regulation of intracellular calcium level and neuroprotective function in cultured neurons. J Neurosci Res 66:612–619

    Article  PubMed  CAS  Google Scholar 

  20. Militante J, Lombardini JB (2004) Age-related retinal degeneration in animal models of aging: possible involvement of taurine deficiency and oxidative stress. Neurochem Res 29:151–160

    Article  PubMed  CAS  Google Scholar 

  21. Balkan J, Kanbagli O, Hatipoglu A, Kucuk M, Cevikbas U, Toke G, Uysal M (2002) Improving effect of dietary taurine supplementation on the oxidative stress and lipid levels in the plasma, liver and aorta of rabbits fed on a high-cholesterol diet. Biosci Biotechnol Biochem 66:1755–1758

    Article  PubMed  CAS  Google Scholar 

  22. Menzie J, Pan C, Prentice H, Wu JY (2012) Taurine and central nervous system disorders. Amino Acids. doi:10.1007/s00726-012-1382-z

    PubMed  Google Scholar 

  23. Tadros GM, Khalifa EA, Abdel-Naim BA, Arafa HM (2005) Huntingtons: neuroprotective effect of taurine in 3-nitropropionic acid-induced experimental animal model of Huntington’s disease phenotype. Pharmacol Biochem Behav 82:574–582

    Article  PubMed  CAS  Google Scholar 

  24. Louzada PR, Lima AC, Mendonca-Silva DL, Noel F, De Mello FG, Ferreira ST (2004) Taurine prevent the neurotoxicity of beta amyloid and glutamate receptor agonists: activation of GABA receptors and possible implications for Alzheimer’s disease and other neurological disorders. FASEB J 18:511–518

    Article  PubMed  CAS  Google Scholar 

  25. Ward R, Cirkovic-Vellichovia T, Ledeque F, Tirizitis G, Dubars G, Datla K, Dexter D, Heushling P, Crichton R (2006) Neuroprotection by taurine and taurine analogues. Adv Exp Med Biol 583:299–306

    Article  PubMed  CAS  Google Scholar 

  26. Wu JY, Wu H, Jin Y, Wei J, Sha D, Prentice H, Lee HH, Lin CH, Lee YH, Yang LL (2009) Mechanism of Neuroprotective Function of Taurine. Adv Exp Med Biol 643:169–179

    Article  PubMed  CAS  Google Scholar 

  27. Sankar Samipillai S, Jagadeesan G, Thanizh Selvi K, Sivakumar K (2010) Protective effect of taurine against mercury induced toxicity. Int J Curr Res 1:023–029

    Google Scholar 

  28. Paxinos G, Watson C (1986) The rat brain in stereotaxiccoordinate. Academic Press, Sydney

    Google Scholar 

  29. Morris R (1984) Development of water maze procedure for studying spatial learning in the rat. J Neurosci Meth 11:47–60

    Article  CAS  Google Scholar 

  30. Utley HC, Bernheim F, Hochslein P (1967) Effect of sulfhydryl reagent on peroxidation in microsome. Arch Biochem Biophys 260:521–531

    Google Scholar 

  31. Jollow DJ, Mitchell JR, Zampagline N (1974) Bromobenzene induced liver necrosis: protective role of glutathione and evidence for 3,4- bromobenzene as the hepatic metabolite. Pharmacology 11:151–169

    Article  PubMed  CAS  Google Scholar 

  32. Mohandas J, Marshall JJ, Duggin GG, Horvath JS, Tiller D (1984) Differential distribution of glutathione and glutathione related enzymes in rabbit kidneys: possible implication in analgesic neuropathy. Cancer Res 44:5086–5091

    PubMed  CAS  Google Scholar 

  33. Carlberg I, Mannerviek B (1975) Glutathione reductase levels in rat brain. J Biol Chem 250:5475–5480

    PubMed  CAS  Google Scholar 

  34. Habig WH, Pabst MJ, Jokoby WB (1974) Glutathion-S-transferase: the first enzymatic step in mercapturic acid formation. J Biol Chem 249:7130–7139

    PubMed  CAS  Google Scholar 

  35. Stevens MJ, Obrosova I, Cao X, Van Huysen C, Greene DA (2000) Effects of DL-alpha-lipoic acid on peripheral nerve conduction, blood flow, energy metabolism, and oxidative stress in experimental diabetic neuropathy. Diabetes 49:1006–1015

    Article  PubMed  CAS  Google Scholar 

  36. Claiborne A (1985) Catalase activity. In: Greenwald RA (ed) CRC Hand Book of Methods For Oxygen Radical Research. CRC Press, Boca Raton, pp 283–284

    Google Scholar 

  37. Ellman GL, Courtney KD, Andres V, Featherstone RM (1961) A new and rapid colorimetric determination of acetylcholinetserase activity. Biochem Pharmacol 7:88–95

    Article  PubMed  CAS  Google Scholar 

  38. Lowry OH, Rosenbrough NJ, Farr AL, Randall RJ (1951) Protein measurement with folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  39. Barone E, Di Domenico F, Sultana R, Coccia R, Mancuso C, Perluigi M, Butterfield DA (2012) Heme oxygenase-1 posttranslational modifications in the brain of subjects with Alzheimer disease and mild cognitive impairment. Free Radic Biol Med 52:2292–2301

    Article  PubMed  CAS  Google Scholar 

  40. Rivas-Arancibia S, Dorado-Martínez C, Borgonio-Pérez G, Hiriart-Urdanivia M, Verdugo-Diaz L, Durán-Vázquez A, Colin-Baranque L, Avila-Costa MR (2000) Effects of taurine on ozone-induced memory deficits and lipid peroxidation levels in brains of young, mature, and old rats. Environ Res 82:7–17

    Article  PubMed  CAS  Google Scholar 

  41. Praticò D (2008) Evidence of oxidative stress in Alzheimer’s disease brain and antioxidant therapy: lights and shadows. Ann N Y Acad Sci 1147:70–78

    Article  PubMed  Google Scholar 

  42. Massaad CA, Klann E (2004) Reactive oxygen species in the regulation of synaptic plasticity and memory. Antioxid Redox Signal 14:2013–2054

    Article  Google Scholar 

  43. Srikanth V, Maczurek A, Phan T, Steele M, Westcott B, Juskiw D, Münch G (2011) Advanced glycation endproducts and their receptor RAGE in Alzheimer’s disease. Neurobiol Aging 32:763–777

    Article  PubMed  CAS  Google Scholar 

  44. Poucet B, Save E, Lenck-Santini PP (2000) Sensory and memory properties of hippocampal place cells. Rev Neurosci 11:95–111

    PubMed  CAS  Google Scholar 

  45. Arlt S, Beisiegel U, Kontush A (2002) Lipid peroxidation in neurodegeneration: new insights into Alzheimer’s disease. Curr Opin Lipido l 13:289–294

    Article  CAS  Google Scholar 

  46. Rosemberg DB, da Rocha RF, Rico EP, Zanotto-Filho A, Dias RD, Bogo MR, Bonan CD, Moreira JC, Klamt F, Souza DO (2010) Taurine prevents enhancement of acetylcholinesterase activity induced by acute ethanol exposure and decreases the level of markers of oxidative stress in zebrafish brain. Neuroscience 171:683–692

    Article  PubMed  CAS  Google Scholar 

  47. Ansari MA, Joshi G, Huang Q, Opil WO, Abdul HM, Sultana R, Butterfield DA (2006) In vivo administration of D609 leads to protection of subsequently isolated gerbil brain mitochondria subjected to in vitro oxidative stress induced by amyloid betapeptide and other oxidative stressors: relevance to Alzheimer’s disease and other oxidative stressrelated neurodegenerative disorders. Free Radic Biol Med 41:1694–1703

    Article  PubMed  CAS  Google Scholar 

  48. Ahmad AS, Ansari MA, Ahmad M, Saleem S, Yousuf S, Hoda MN, Islam F (2005) Neuroprotection by crocetin in a hemi-parkinsonian rat model. Pharmacol Biochem Behav 81:805–813

    Article  PubMed  CAS  Google Scholar 

  49. Ansari MA, Roberts KN, Scheff SW (2008) Oxidative stress and modification of synaptic proteins in hippocampus after traumatic brain injury. Free Radic Biol Med 45:443–452

    Article  PubMed  CAS  Google Scholar 

  50. La Perez-De, Cruz V, Gonzalez-Cortes C, Galvan-Arzate S, Medina-Campos ON, Perez-Severiano F, Ali SF, Pedraza-Chaverri J, Santamaria A (2005) Excitotoxic brain damage involves early peroxynitrite formation in a model of Huntington’s disease in rats: protective role of iron porphyrinate 5,10,15,20-etrakis (4-sulfonatophenyl)porphyrinate iron (III). Neuroscience 135:463–474

    Article  Google Scholar 

  51. Shah ZA, Vohora SB (2002) Antioxidant/restorative effects of calcined gold preparations used in Indian systems of medicine against global and focal models of ischaemia. Pharmacol Toxicol 90:254–259

    Article  PubMed  CAS  Google Scholar 

  52. Schliebs R, Arendt T (2011) The cholinergic system in aging and neuronal degeneration. Behav Brain Res 221:555–563

    Article  PubMed  CAS  Google Scholar 

  53. Mehla J, Pahuja M, Dethe SM, Agarwal A, Gupta YK (2012). Amelioration of intracerebroventricular streptozotocin induced cognitive impairment by Evolvulus alsinoides in rats: In vitro and in vivo evidence. Neurochem Int pii:S0197-0186: 00248-3

    Google Scholar 

  54. Pathan AR, Viswanad B, Sonkusare SK, Ramarao P (2006) Chronic administration of pioglitazone attenuates intracerebroventricular streptozotocin induced-memory impairment in rats. Life Sci 79:2209–2216

    Article  PubMed  CAS  Google Scholar 

  55. Birdsall TC (1998) Therapeutic applications of taurine. Altern Med Rev 3:128–136

    PubMed  CAS  Google Scholar 

  56. Salkovic-Petrisic Melita, Osmanovic-Barilar Jelena, Bru¨ckner Martina K, Hoyer Siegfried, Arendt Thomas, Riederer Peter (2011) Cerebral amyloid angiopathy in streptozotocin rat model of sporadic Alzheimer’s disease: a long-term follow up study. J Neural Transm 118:765–772

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to AYUSH, Ministry of Health and Family Welfare, Govt. of India, for providing funds to carry out this work.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fakhrul Islam.

Additional information

Fund for the Improvement of Science and Technology sponsored by DST and Special Assistance Programme sponsored by UGC.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Javed, H., Khan, A., Vaibhav, K. et al. Taurine ameliorates neurobehavioral, neurochemical and immunohistochemical changes in sporadic dementia of Alzheimer’s type (SDAT) caused by intracerebroventricular streptozotocin in rats. Neurol Sci 34, 2181–2192 (2013). https://doi.org/10.1007/s10072-013-1444-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-013-1444-3

Keywords

Navigation