Skip to main content
Log in

Effects of breed group and development on dogs’ willingness to follow a human misleading advice

  • Original Paper
  • Published:
Animal Cognition Aims and scope Submit manuscript

Abstract

The aim of this work was to investigate the effect of dog breed groups, i.e., primitive, hunting/herding and Mastiff like (Study 1) and development, i.e., 4-month-old puppies vs adults (Study 2) on a quantity discrimination task. The task consisted of three conditions: C1—dogs were asked to choose between a large and a small amount of food; C2—the same choice was presented and dogs could choose after having witnessed the experimenter favouring the small quantity. C3—similar to C2 but the plates had two equally small food quantities. Study 1 revealed that dogs in the hunting/herding group were significantly more likely than Mastiff-like group to choose the small quantity indicated by the person over the large one, although all dog groups chose the large quantity over the small when they had a free choice. These results are consistent with the hypothesis that hunting/herding breeds have been selected for working in cooperation with humans and thus may be more sensitive to human social communicative cues than other breeds. In Study 2, results showed that 4-month-old puppies performed at chance level in C1, whereas in C2 both adults and puppies conformed to the experimenter’s choice. In C3, adults followed the experimenter significantly more than puppies, although puppies still followed the experimenter above chance. Overall, domestic dogs seem to rely heavily on social communicative cues from humans, even when the information contradicts their own perception. This tendency to respond to human social cues is present, although at a lesser extent already at 4 months.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abdai J, Gergely A, Petró E, Topál J, Miklósi Á (2015) An investigation on social representations: inanimate agent can mislead dogs (Canis familiaris) in a food choice task. PLoS One 10(8):e0134575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Agnetta B, Hare B, Tomasello M (2000) Cues to food locations that domestic dogs (Canis familiaris) of different ages do and do not use. Anim Cognit 3:107–112

    Article  Google Scholar 

  • Baker JM, Morath J, Rodzon KS, Jordan KE (2012) A shared system of representation governing quantity discrimination in canids. Front Psychol 3:387

    Article  PubMed  PubMed Central  Google Scholar 

  • Barrera G, Mustaca A, Bentosela M (2011) Communication between domestic dogs and humans: effects of shelter housing upon the gaze to the human. Anim Cognit 14(5):727–734

    Article  Google Scholar 

  • Bentosela M, Barrera G, Jakovcevic A, Elgier AM, Mustaca AE (2008) Effect of reinforcement, reinforcer omission and extinction on a communicative response in domestic dogs (Canis familiaris). Behav Process 78(3):464–469

    Article  Google Scholar 

  • Bisazza A, Piffer L, Serena G, Agrillo C (2010) Ontogeny of numerical abilities in fish. PLoS One 5(11):e15516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bonanni R, Natoli E, Cafazzo S, Valsecchi P (2011) Free-ranging dogs assess the quantity of opponents in intergroup conflicts. Anim Cognit 14(1):103–115

    Article  Google Scholar 

  • Bräuer J, Kaminski J, Riedel J, Call J, Tomasello M (2006) Making inferences about the location of hidden food: social dog, causal ape. J Comp Psychol 120(1):38

    Article  PubMed  Google Scholar 

  • Choudhury N, Gorman KS (2000) The relationship between sustained attention and cognitive performance in 17–24-month old toddlers. Inf Child Dev 9:127–146

    Article  Google Scholar 

  • Couillard NL, Woodward AL (1999) Children’s comprehension of deceptive points. Br J Dev Psychol 17:515–521

    Article  Google Scholar 

  • D’Aniello B, Scandurra A (2016) Ontogenetic effects on gazing behaviour: a case study of kennel dogs (Labrador Retrievers) in the impossible task paradigm. Anim Cognit 19:565–570

    Article  Google Scholar 

  • Danchin E, Giraldeau L-A, Valone TJ, Wagner RH (2004) Public information: from nosy neighbors to cultural evolution. Science 305:487–491

    Article  CAS  PubMed  Google Scholar 

  • DeLong CM, Barbato S, O’Leary T, Wilcox KT (2017) Small and large number discrimination in goldfish (Carassius auratus) with extensive training. Behav Process 141:172–183

    Article  Google Scholar 

  • Dorey NR, Udell MA, Wynne CD (2010) When do domestic dogs, Canis familiaris, start to understand human pointing? The role of ontogeny in the development of interspecies communication. Anim Behav 79(1):37–41

    Article  Google Scholar 

  • Dwyer C, Cole MR (2018) Domesticated dogs (Canis familiaris) tend to follow repeated deceptive human cues even when food is visible. Learn Behav 46:442–448

    Article  PubMed  Google Scholar 

  • Elgier AM, Jakovcevic A, Barrera G, Mustaca AE, Bentosela M (2009) Communication between domestic dogs (Canis familiaris) and humans: dogs are good learners. Behav Process 81:402–408

    Article  Google Scholar 

  • Feigenson L, Carey S, Hauser MD (2002) The representations underlying infants’ choice of more: object files versus analog magnitudes. Psychol Sci 13:150–156

    Article  PubMed  Google Scholar 

  • Gàcsi M, McGreevy P, Kara E, Miklósi Á (2009) Effects of selection for cooperation and attention in dogs. Behav Brain Funct 5(1):31

    Article  PubMed  PubMed Central  Google Scholar 

  • Galef BG, Giraldeau LA (2001) Social influences on foraging in vertebrates: causal mechanisms and adaptive functions. Anim Behav 61:3–15

    Article  PubMed  Google Scholar 

  • Hare B, Tomasello M (2005) Human-like social skills in dogs? Trends Cognit Sci 9:439–444

    Article  Google Scholar 

  • Hare B, Brown M, Williamson C, Tomasello M (2002) The domestication of social cognition in dogs. Science 298:1634–1636

    Article  CAS  PubMed  Google Scholar 

  • Hauser MD, Spelke E (2004) Evolutionary and developmental foundations of human knowledge. Cog Neurosci 3:853–864

    Google Scholar 

  • Horowitz A, Hecht G, Dedrick A (2013) Smelling more or less: investigating the olfactory experience of the domestic dog. Learn Motiv 44:207–217

    Article  Google Scholar 

  • Jakovcevic A, Elgier AM, Mustaca AE, Bentosela M (2010a) Breed differences in dogs’ (Canis familiaris) gaze to the human face. Behav Process 84(2):602–607

    Article  Google Scholar 

  • Jakovcevic A, Elgier AM, Mustaca AE, Bentosela M (2010b) Breed differences in dogs’ (Canis familiaris) gaze to the human face. Behav Process 84:602–607

    Article  Google Scholar 

  • Jaswal VK (2010) Believing what you’re told: young children’s trust in unexpected testimony about the physical world. Cognit Psychol 61:248–272

    Article  PubMed  Google Scholar 

  • Jaswal VK, Pérez-Edgar K, Kondrad RL, Palmquist CM, Cole CA, Cole CE (2014) Can’t stop believing: inhibitory control and resistance to misleading testimony. Dev Sci 17(6):965–976

    Article  PubMed  Google Scholar 

  • Kilian A, Yaman S, von Fersen L, Güntürkün O (2003) A bottlenose dolphin discriminates visual stimuli differing in numerosity. Anim Learn Behav 31:133–142

    Article  Google Scholar 

  • Konno A, Romero T, Inoue-Murayama M, Saito A, Hasegawa T (2016) Dog breed differences in visual communication with humans. PLoS One 11(10):e0164760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kundey SMA, De Los Reyes A, Arbuthnot J, Allen R, Coshun A, Molina S, Royer E (2010) Domesticated dogs’ (Canis familiaris) response to dishonest human points. Int J Comp Psychol 23:201–215

    Google Scholar 

  • Macpherson K, Roberts WA (2013) Can dogs count? Learn Motiv 44(4):241–251

    Article  Google Scholar 

  • Marshall-Pescini S, Passalacqua CA, Barnard S, Valsecchi P, Prato Previde E (2009) Agility and search and rescue training differently affects pet dogs’ behaviour in socio-cognitive tasks. Behav Process 81(3):416–422

    Article  Google Scholar 

  • Marshall-Pescini S, Prato-Previde E, Valsecchi P (2011) Are dogs (Canis familiaris) misled more by their owners than by strangers in a food choice task? Anim Cogn 14(1):137–142

    Article  CAS  PubMed  Google Scholar 

  • Marshall-Pescini S, Passalacqua C, Miletto-Pedrazzini ME, Valsecchi P, Prato-Previde E (2012) Do dogs (Canis lupus familiaris) make counterproductive choices because they are sensitive to human ostensive cues? PLoS One 7(4):e35437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McKinley J, Sambrook TD (2000) Use of human-given cues by domestic dogs (Canis familiaris) and horses (Equus caballus). Anim Cognit 3(1):13–22

    Article  Google Scholar 

  • Miklósi A, Kubinyi E, Topaal J, Gaacsi M (2003) A simple reason for a big difference: wolves do not look back at humans, but dogs do. Curr Biol 13:763–766

    Article  PubMed  Google Scholar 

  • Miletto-Petrazzini ME, Wynne CDL (2016) What counts for dogs (Canis lupus familiaris) in a quantity discrimination task? Behav Process 122:90–97

    Article  Google Scholar 

  • Miletto-Petrazzini ME, Wynne CDL (2017) Quantity discrimination in canids: dogs (Canis familiaris) and wolves (Cani lupus) compared. Behav Process 144:89–92

    Article  Google Scholar 

  • Parker HG, Kim LV, Sutter NB, Carlson S, Lorentzen TD, Malek TB, Johnson GS, DeFrance HB, Ostrander EA, Kruglyak L (2004) Genetic structure of the purebred domestic dog. Science 304:1160–1164

    Article  CAS  PubMed  Google Scholar 

  • Passalacqua C, Marshall-Pescini S, Barnard S, Lakatos G, Valsecchi P, Prato-Previde E (2011) Human-directed gazing behaviour in puppies and adult dogs, Canis lupus familiaris. Anim Behav 82(5):1043–1050

    Article  Google Scholar 

  • Petter M, Musolino E, Roberts WA, Cole M (2009) Can dogs (Canis familiaris) detect human deception? Behav Process 82(2):109–118

    Article  Google Scholar 

  • Pisa PE, Agrillo C (2009) Quantity discrimination in felines: a preliminary investigation of the domestic cat (Felis silvestris catus). J Ethol 27(2):289–293

    Article  Google Scholar 

  • Plotnik JM, Lair R, Suphachoksahakun W, De Waal FB (2011) Elephants know when they need a helping trunk in a cooperative task. Proc Natl Acad Sci USA 108(12):5116–5121

    Article  PubMed  Google Scholar 

  • Plude DJ, Enns JT, Brodeur D (1994) The development of selective attention: a life-span overview. Acta Psychol 86:227–272

    Article  CAS  Google Scholar 

  • Pongrácz P, Miyake T, Vida V, Csányi V (2005) The pet dogs ability for learning from a human demonstrator in a detour task is independent from the breed and age. Appl Anim Behav Sci 90:309–323

    Article  Google Scholar 

  • Prato-Previde E, Marshall-Pescini S, Valsecchi P (2008) Is your choice my choice? The owners’ effect on pet dogs’ (Canis lupus familiaris) performance in a food choice task. Anim Cognit 11:167–174

    Article  CAS  Google Scholar 

  • Renevey N, Bshary R, van de Waal E (2013) Philopatric vervet monkey females are the focus of social attention rather independently of rank. Behaviour 150(6):599–615

    Article  Google Scholar 

  • Riedel K, Schumann J, Kaminski Call J, Tomasello M (2008) The early ontogeny of human-dog communication. Anim Behav 75:1003–1014

    Article  Google Scholar 

  • Rieucau G, Giraldeau LA (2009) Persuasive companions can be wrong: the use of misleading social information in nutmeg mannikins. Behav Ecol 20(6):1217–1222

    Article  Google Scholar 

  • Rugani R, Fontanari L, Simoni E, Regolin L, Vallortigara G (2009) Arithmetic in newborn chicks. Proc R Soc Lond B Biol Sci 276(1666):2451–2460

    Article  Google Scholar 

  • Rugani R, Cavazzana A, Vallortigara G, Regolin L (2013) One, two, three, four, or is there something more? Numerical discrimination in day-old domestic chicks. Anim Cogn 16(4):557–564

    Article  PubMed  Google Scholar 

  • Serpell JA, Duffy DL (2014) Dog breed and their behaviour. In: Horowitz A (ed) Domestic dog cognition and behavior. Springer, New York, pp 31–57

    Chapter  Google Scholar 

  • Szetei V, Miklósi Á, Topál J, Csányi V (2003) When dogs seem to lose their nose: an investigation on the use of visual and olfactory cues in communicative context between dog and owner. Appl Anim Behav Sci 83:141–152

    Article  Google Scholar 

  • Takaoka A, Maeda T, Hori Y, Fujita K (2015) Do dogs follow behavioral cues from an unreliable human? Anim Cognit 18(2):475–483

    Article  Google Scholar 

  • Turcsán B, Kubiny E, Miklósi A (2011) Trainability and boldness traits differ between breed clusters based on conventional breed categories and genetic relatedness. Appl Anim Behav Sci 132:61–70

    Article  Google Scholar 

  • Udell MA, Dorey NR, Wynne CD (2010) What did domestication do to dogs? A new account of dogs’ sensitivity to human actions. Biol Rev 85(2):327–345

    Article  PubMed  Google Scholar 

  • Uller C, Lewis J (2009) Horses (Equus caballus) select the greater of two quantities in small numerical contrasts. Anim Cognit 12:733–738

    Article  Google Scholar 

  • Uller C, Jaeger R, Guidry G, Martin C (2003) Salamanders (Plethodon cinereus) go for more: rudiments of number in an amphibian. Anim Cognit 6:105–112

    Article  Google Scholar 

  • Ward C, Smuts BB (2007) Quantity-based judgments in the domestic dog (Canis lupus familiaris). Anim Cognit 10(1):71–80

    Article  Google Scholar 

  • West RE, Young RJ (2002) Do domestic dogs show any evidence of being able to count? Anim Cognit 5(3):183–186

    Article  Google Scholar 

  • Willis MB (1977) The German Shepherd dog: its history, development and genetics. Arco Publishing Company, New York, pp 19–32

    Google Scholar 

  • Wobber V, Hare B, Koler-Matznick J, Wrangham R, Tomasello M (2009) Breed differences in domestic dogs’ (Canis familiaris) comprehension of human communicative signals. Interact Stud 10(2):206–224

    Article  Google Scholar 

  • Wynne CD, Udell MA, Lord KA (2008) Ontogeny’s impacts on human-dog communication. Anim Behav 76(4):e1–e4

    Article  Google Scholar 

  • Zaine I, Domeniconi C, Wynne CD (2015) The ontogeny of human point following in dogs: when younger dogs outperform older. Behav Process 119:76–85

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by doctoral grants from the University of Milan to CP and a doctoral grant from the University of Parma to SB. We are very grateful to Sarah Marshall-Pescini for her contribution in running the experiments and to all the owners and dogs who participated as volunteers in these studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shanis Barnard.

Ethics declarations

Conflict of interest

All authors declare that they have no conflicts of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barnard, S., Passalacqua, C., Pelosi, A. et al. Effects of breed group and development on dogs’ willingness to follow a human misleading advice. Anim Cogn 22, 757–768 (2019). https://doi.org/10.1007/s10071-019-01272-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10071-019-01272-3

Keywords

Navigation