Skip to main content
Log in

Animal timing: a synthetic approach

  • Review
  • Published:
Animal Cognition Aims and scope Submit manuscript

Abstract

Inspired by Spence’s seminal work on transposition, we propose a synthetic approach to understanding the temporal control of operant behavior. The approach takes as primitives the temporal generalization gradients obtained in prototypical concurrent and retrospective timing tasks and then combines them to synthetize more complex temporal performances. The approach is instantiated by the learning-to-time (LeT) model. The article is divided into three parts. In the first part, we review the basic findings concerning the generalization gradients observed in fixed-interval schedules, the peak procedure, and the temporal generalization procedure and then describe how LeT explains them. In the second part, we use LeT to derive by gradient combination the typical performances observed in mixed fixed-interval schedules, the free-operant psychophysical procedure, the temporal bisection task, and the double temporal bisection task. We also show how the model plays the role of a useful null hypothesis to examine whether temporal control in the bisection task is relative or absolute. In the third part, we identify a set of issues that must be solved to advance our understanding of temporal control, including the shape of the generalization gradients outside the range of trained stimulus durations, the nature of temporal memories, the influence of context on temporal learning, whether temporal control can be inhibitory, and whether temporal control is also relational. These issues attest to the heuristic value of a Spencean approach to temporal control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Notes

  1. Another possibility is to decrease the link strength to a negative value. The difference may be important to explain some experimental findings through summation of temporal generalization gradients. We return to this issue in the final section.

  2. A more complete model would assume different thresholds to start and stop responding, Θ start and Θ stop, both random variables possibly with different variances to account for the microstructure of responding on the individual trials of the peak procedure (e.g., the pattern of positive correlations between the start and stop times, and negative correlations between the start times and the duration of the response period—e.g., Cheng et al. 1993; Church et al. 1994; Gallistel et al. 2004; Gibbon and Church 1992; Killeen and Fetterman 1993; Machado and Keen 2003).

References

  • Arantes J, Machado A (2008) Context effects in a temporal discrimination task: further tests of the scalar expectancy theory and learning-to-time models. J Exp Anal Behav 90:33–51

    Article  PubMed  PubMed Central  Google Scholar 

  • Balci F, Gallistel CR, Allen BD, Frank KM, Gibson JM, Brunner D (2009) Acquisition of peak responding: what is learned? Behav Process 80:67–75

    Article  Google Scholar 

  • Bizo LA, White KG (1995) Biasing the pacemaker in the behavioral theory of timing. J Exp Anal Behav 64:225–235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown BL, Höhn S, Faure A, von Hörsten S, LeBlanc P, Desvignes N, Doyère V (2011) Temporal sensitivity changes with extended training in a bisection task in a transgenic rat model. Front Integr Neurosci 5:1–7

    Article  Google Scholar 

  • Bush R, Mosteller F (1955) Stochastic models of learning. Wiley, New York

    Book  Google Scholar 

  • Cabeza de Vaca S, Brown BL, Hemmes NS (1994) Internal clock and memory processes in animal timing. J Exp Psychol Anim Behav Process 20:184–198

    Article  CAS  PubMed  Google Scholar 

  • Carroll CA, Boggs J, O’Donnell BF, Shekhar A, Hetrick WP (2008) Temporal processing dysfunction in schizophrenia. Brain Cogn 67:150–161

    Article  PubMed  PubMed Central  Google Scholar 

  • Carvalho MP, Machado A (2012) Relative versus absolute stimulus control in the temporal bisection task. J Exp Anal Behav 98:23–44

    Article  Google Scholar 

  • Carvalho MP, Machado A, Tonneau F (2016) Learning in the temporal bisection task: relative or absolute? J Exp Psychol Anim Learn Cogn 42:67–81

    Article  PubMed  Google Scholar 

  • Caselli L, Iaboli L, Nichelli P (2009) Time estimation in mild Alzheimer’s disease patients. Behav Brain Funct 5. Retrieved from http://www.behavioralandbrainfunctions.com/content/pdf/1744-9081-5-32.pdf

  • Catania AC (1970) Reinforcement schedules and the psychophysical judgments: a study of some temporal properties of behavior. In: Schoenfeld WN (ed) The theory of reinforcement schedules. Appleton-Century-Crofts, New York, pp 1–42

    Google Scholar 

  • Catania AC, Reynolds GS (1968) A quantitative analysis of the responding maintained by interval schedules of reinforcement. J Exp Anal Behav 11:327–383

    Article  PubMed  PubMed Central  Google Scholar 

  • Cheng K (1989) The vector sum model of pigeon landmark use. J Exp Psychol Anim Behav Process 15:366–375

    Article  Google Scholar 

  • Cheng K (1990) More psychophysics of the pigeon’s use of landmarks. J Comp Physiol A 166:857–863

    Article  Google Scholar 

  • Cheng K (1992) Three psychophysical principles in the processing of spatial and temporal information. In: Honig WK, Fetterman JG (eds) Cognitive aspects of stimulus control. Lawrence Erlbaum Associates, Hillsdale, pp 69–88

    Google Scholar 

  • Cheng K, Westwood R, Crystal JD (1993) Memory variance in the peak procedure of timing in pigeons. J Exp Psychol Anim Behav Process 19:68–76

    Article  Google Scholar 

  • Cheng K, Spetch M, Johnston M (1997) Spatial peak shift and generalization in pigeons. J Exp Psychol Anim Behav Process 23:469–481

    Article  Google Scholar 

  • Cheng K, Spetch M, Kelly D, Bingman V (2006) Small-scale spatial cognition in pigeons. Behav Process 72:115–127

    Article  Google Scholar 

  • Church RM (2003) A concise introduction to scalar timing theory. In: Meck W (ed) Functional and neural mechanisms of interval timing. CRC Press, Boca Raton, pp 3–22

    Google Scholar 

  • Church RM (2004) Temporal learning. In: Pashler H, Gallistel CR (eds) Stevens’ handbook of experimental psychology, vol. 3: learning, motivation, and emotion, 3rd edn. Wiley, New York, pp 365–393

    Google Scholar 

  • Church RM, Deluty MZ (1977) Bisection of temporal intervals. J Exp Psychol Anim Behav Process 3:216–228

    Article  CAS  PubMed  Google Scholar 

  • Church RM, Gibbon J (1982) Temporal generalization. J Exp Psychol Anim Behav Process 8:165–189

    Article  CAS  PubMed  Google Scholar 

  • Church RM, Meck WH, Gibbon J (1994) Application of scalar timing theory to individual trials. J Exp Psychol Anim Behav Process 20:135–155

    Article  CAS  PubMed  Google Scholar 

  • Collett TS, Cartwright BA, Smith BA (1986) Landmark learning and visuo-spatial memories in gerbils. J Comp Physiol A 158:835–851

    Article  CAS  PubMed  Google Scholar 

  • Cook RG, Rosen HA (2010) Temporal control of internal states in pigeons. Psychon Bull Rev 17:915–922

    Article  PubMed  Google Scholar 

  • Crystal JD, Baramidze GT (2006) Endogenous oscillations in short-interval timing. Behav Process 74:152–158

    Article  Google Scholar 

  • Dews PB (1970) The theory of fixed-interval responding. In: Schoenfeld WN (ed) The theory of reinforcement schedules. Appleton-Century-Crofts, New York, pp 43–61

    Google Scholar 

  • Dews PB (1978) Studies on responding under fixed-interval schedules of reinforcement II. The scalloped pattern of the cumulative record. J Exp Anal Behav 29:67–75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elsmore TF (1971) Control of responding by stimulus duration. J Exp Anal Behav 16:81–87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferster CB, Skinner BF (1957) Schedules of reinforcement. Appleton-Century-Crofts, New York

    Book  Google Scholar 

  • Gallistel CR (1990) The organization of learning. Bradford Books/MIT Press, Cambridge

    Google Scholar 

  • Gallistel CR (2007) Flawed foundations of associationism? Comment on Machado and Silva (2007). Am Psychol 62:682–685

    Article  CAS  PubMed  Google Scholar 

  • Gallistel CR, King A, McDonald R (2004) Sources of variability and systematic error in mouse timing behavior. J Exp Psychol Anim Behav Process 30:3–16

    Article  CAS  PubMed  Google Scholar 

  • Ghirlanda S, Enquist M (2003) A century of generalization. Anim Behav 66:15–36

    Article  Google Scholar 

  • Gibbon J (1977) Scalar expectancy theory and Weber’s law in animal timing. Psychol Rev 84:279–325

    Article  Google Scholar 

  • Gibbon J (1991) Origins of scalar timing theory. Learn Motiv 22:3–38

    Article  Google Scholar 

  • Gibbon J, Church R (1992) Comparison of variance and covariance patterns in parallel and serial theories of timing. J Exp Anal Behav 57:393–406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gibbon J, Church R, Meck W (1984) Scalar timing in memory. In: Allan L, Gibbon J (eds) Timing and time perception. Annals of the New York Academy of Sciences, New York, pp 52–77

    Google Scholar 

  • Guilhardi P, Church RM (2004) Measures of temporal discrimination in fixed-interval performance: a case study in archiving data. Behav Res Methods Instrum Comput 36:661–669

    Article  PubMed  Google Scholar 

  • Guilhardi P, MacInnis MLM, Church RM, Machado A (2007) Shifts in the psychophysical function in rats. Behavioral Processes 75:167–175

    Article  Google Scholar 

  • Guttman N, Kalish H (1956) Discriminability and stimulus generalization. J Exp Psychol 51:79–88

    Article  CAS  PubMed  Google Scholar 

  • Honig WK, Boneau CA, Berstein KR, Pennypacker HS (1963) Positive and negative generalization gradients obtained under equivalent training conditions. J Comp Physiol Psychol 56:111–116

    Article  Google Scholar 

  • Hulse SH, Kline CL (1993) The perception of time relations in auditory tempo discrimination. Anim Learn Behav 21:281–288

    Article  Google Scholar 

  • Jenkins HM, Harrison RH (1960) Effect of discrimination training on auditory generalization. J Exp Psychol 59:246–253

    Article  CAS  PubMed  Google Scholar 

  • Kaiser DH (2008) The proportion of fixed interval trials to probe trials affects acquisition of the peak procedure fixed interval timing task. Behav Process 77:100–108

    Article  Google Scholar 

  • Kaiser DH, Zentall T, Neiman E (2002) Timing in pigeons: effects of the similarity between intertrial interval and gap in a timing signal. J Exp Psychol Anim Behav Process 28:416–422

    Article  PubMed  Google Scholar 

  • Killeen PR (1999) Modeling modeling. J Exp Anal Behav 71:275–280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Killeen PR, Fetterman JG (1988) A behavioral theory of timing. Psychol Rev 95:274–285

    Article  CAS  PubMed  Google Scholar 

  • Killeen PR, Fetterman JG (1993) The behavioral theory of timing: transition analyses. J Exp Anal Behav 59:411–422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kirkpatrick-Steger K, Miller S, Betti C, Wasserman E (1996) Cyclic responding by pigeons on the peak timing procedure. J Exp Psychol Anim Behav Process 22:447–460

    Article  CAS  PubMed  Google Scholar 

  • Köhler W (1938) Simple structural functions in the chimpanzee and in the children. In: Ellis WD (ed) A source book of gestalt psychology. Routledge & Kegan, London

    Google Scholar 

  • Laude J, Stagner J, Rayburn-Reeves R, Zentall T (2014) Midsession reversals with pigeons: visual versus spatial discriminations and the intertrial interval. Learn Behav 42:40–46

    Article  PubMed  PubMed Central  Google Scholar 

  • Leak T, Gibbon J (1995) Simultaneous timing of multiple intervals: implications of the scalar property. J Exp Psychol Anim Behav Process 21:3–19

    Article  CAS  PubMed  Google Scholar 

  • Lejeune H, Wearden JH (1991) The comparative psychology of fixed-interval responding: some quantitative analyses. Learn Motiv 22:84–111

    Article  Google Scholar 

  • Lejeune H, Wearden JH (2006) Scalar properties in animal timing: conformity and violations. Q J Exp Psychol 59:1875–1908

    Article  Google Scholar 

  • Lejeune H, Richelle M, Wearden JH (2006) About Skinner and time: behavior-analytic contributions to research on animal timing. J Exp Anal Behav 85:125–142

    Article  PubMed  PubMed Central  Google Scholar 

  • Lima J (2010) Invariância da escala temporal com programas de intervalos fixos misturados. Unpublished master’s thesis, University of Minho, Braga, Portugal

  • Lowe CF, Harzem P (1977) Species differences in temporal control of behavior. J Exp Anal Behav 28:189–201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lowe CF, Harzem P, Spencer P (1979) Temporal control of behavior and the power law. J Exp Anal Behav 31:333–343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • MacDonald C, Cheng RK, Meck WH (2012) Interval timing and time-based decision making requires differential protein synthesis in the dorsal and ventral striatum for the setting of ‘Start’ and ‘Stop’ response thresholds. Front Integr Neurosci 6:10. doi:10.3389/fnint.2012.00010

    Article  PubMed  PubMed Central  Google Scholar 

  • Machado A (1997) Learning the temporal dynamics of behavior. Psychol Rev 104:241–265

    Article  CAS  PubMed  Google Scholar 

  • Machado A, Arantes J (2006) Comparison of scalar expectancy theory (SET) and the learning-to-time (LeT) model in a successive temporal bisection task. Behav Process 72:195–206

    Article  Google Scholar 

  • Machado A, Cevik M (1998) Acquisition and extinction under periodic reinforcement. Behav Process 44:237–262

    Article  CAS  Google Scholar 

  • Machado A, Guilhardi P (2000) Shifts in the psychometric function and their implications for models of timing. J Exp Anal Behav 74:25–54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Machado A, Keen R (1999) Learning to time (LeT) or scalar expectancy theory (SET)? A critical test of two models of timing. Psychol Sci 10:285–290

    Article  Google Scholar 

  • Machado A, Keen R (2003) Temporal discrimination in a long operant chamber. Behav Process 62:157–182

    Article  Google Scholar 

  • Machado A, Oliveira L (2009) Dupla bissecção temporal: testes críticos de dois modelos de timing. Acta Comport 17:25–60

    Google Scholar 

  • Machado A, Pata P (2005) Testing the scalar expectancy theory (SET) and the learning-to-time model (LeT) in a double bisection task. Learn Behav 33:111–122

    Article  PubMed  Google Scholar 

  • Machado A, Silva F (2007a) Toward a richer view of the scientific method: the role of conceptual analysis. Am Psychol 62:671–681

    Article  PubMed  Google Scholar 

  • Machado A, Silva F (2007b) On the clarification of concepts: a reply to Gallistel (2007) and Lau (2007). Am Psychol 62:689–691

    Article  Google Scholar 

  • Machado A, Malheiro MT, Erlhagen W (2009) Learning to time: a perspective. J Exp Anal Behav 92:423–458

    Article  PubMed  PubMed Central  Google Scholar 

  • Maia S, Machado A (2009) Representation of time intervals in a double bisection task: relative or absolute? Behav Process 81:280–285

    Article  Google Scholar 

  • Matell MS, Henning AM (2013) Temporal memory averaging and post-encoding alterations in temporal expectation. Behav Process 95:31–39

    Article  Google Scholar 

  • Matell MS, Kurti AN (2014) Reinforcement probability modulates temporal memory selection and integration processes. Acta Psychol 147:80–91

    Article  Google Scholar 

  • McMillan N, Roberts WA (2012) Pigeons make errors as a result of interval timing in a visual, but not visual-spatial, midsession reversal task. J Exp Psychol Anim Behav Process 38:440–445

    Article  PubMed  Google Scholar 

  • McMillan N, Roberts W (2015) A three-stimulus midsession reversal task in pigeons with visual and spatial discriminative stimuli. Anim Cogn 18:373–383

    Article  PubMed  Google Scholar 

  • McMillan N, Kirk CR, Roberts WA (2014) Pigeon (Columba livia) and rat (Rattus norvegicus) performance in the midsession reversal procedure depends upon cue dimensionality. J Comp Psychol 128:357–366

    Article  PubMed  Google Scholar 

  • Meck WH (1983) Selective adjustment of the speed of internal clock and memory processes. J Exp Psychol Anim Behav Process 9:171–201

    Article  CAS  PubMed  Google Scholar 

  • Meck WH, Church RM (1984) Simultaneous temporal processing. J Exp Psycol Anim Behav Process 10:1–29

    Article  CAS  Google Scholar 

  • Merchant H, Luciana M, Hooper C, Majestic S, Tuite P (2008) Interval timing and Parkinson´s disease: heterogeneity in temporal performance. Exp Brain Res 184:233–248

    Article  PubMed  Google Scholar 

  • Molet M, Zentall TR (2008) Relative judgments affect assessments of stimulus duration. Psychon Bull Rev 15:431–436

    Article  PubMed  Google Scholar 

  • Monteiro T, Machado A (2009) Oscillations following periodic reinforcement. Behav Process 81:170–188

    Article  Google Scholar 

  • Odum AL, Lieving LM, Schaal DW (2002) Effects of d-amphetamine in a temporal discrimination procedure: selective changes in timing or rate dependency? J Exp Anal Behav 78:195–214

    Article  PubMed  PubMed Central  Google Scholar 

  • Oliveira L, Machado A (2008) The effect of sample duration and cue on a double temporal discrimination. Learn Motiv 39:71–94

    Article  Google Scholar 

  • Oliveira L, Machado A (2009) Context effect in a temporal bisection task with the choice keys available during the sample. Behav Process 81:286–292

    Article  Google Scholar 

  • Pinto C, Machado A (2011) Short-term memory for temporal intervals: contrasting explanations of the choose-short effect in pigeons. Learn Motiv 42:13–25

    Article  Google Scholar 

  • Pinto C, Machado A (2015) Coding in pigeons: multiple-coding versus single-code/default strategies. J Exp Anal Behav 103:472–483

    Article  PubMed  Google Scholar 

  • Platt JR (1979) Temporal differentiation and the psychophysics of time. In: Zeiler MD, Harzem P (eds) Reinforcement and the organization of behavior. Wiley, New York, pp 1–29

    Google Scholar 

  • Platt JR, Davis ER (1983) Bisection of temporal intervals by pigeons. J Exp Psychol Anim Behav Process 9:160–170

    Article  CAS  PubMed  Google Scholar 

  • Rayburn-Reeves RM, Zentall TR (2013) Pigeons’ use of cues in a repeated five-trial-sequence, single-reversal task. Learn Behav 41:138–147

    Article  PubMed  PubMed Central  Google Scholar 

  • Rayburn-Reeves RM, Molet M, Zentall TR (2011) Simultaneous discrimination reversal learning in pigeons and humans: anticipatory and perseverative errors. Learn Behav 39:125–137

    Article  PubMed  Google Scholar 

  • Rayburn-Reeves RM, Laude JR, Zentall TR (2013) Pigeons show near-optimal win-stay/lose-shift performance on a simultaneous-discrimination, midsession reversal task with short intertrial intervals. Behav Process 92:65–70

    Article  Google Scholar 

  • Reynolds GS, Catania AC (1962) Temporal discrimination in pigeons. Science 135:314–315

    Article  CAS  PubMed  Google Scholar 

  • Richelle M, Lejeune H (1980) Time in animal behavior. Pergamon, New York

    Google Scholar 

  • Roberts S (1981) Isolation of an internal clock. J Exp Psychol Anim Behav Process 7:242–268

    Article  CAS  PubMed  Google Scholar 

  • Roberts S (1998) The mental representation of time: Uncovering a biological clock. In: Scarborough D, Sternberg S (eds) An invitation to cognitive science: methods, models, and conceptual issues, vol 4, 2nd edn. MIT Press, Cambridge, pp 53–106

    Google Scholar 

  • Roberts WA, Cheng K, Cohen JS (1989) Timing light and tone signals in pigeons. J Exp Psychol Anim Behav Process 15:23–35

    Article  CAS  PubMed  Google Scholar 

  • Russell R, Kirkpatrick K (2007) The role of temporal generalization in a temporal discrimination task. Behav Process 74:115–125

    Article  Google Scholar 

  • Sanabria F, Killeen P (2007) Temporal generalization accounts for response resurgence in the peak procedure. Behav Process 74:126–141

    Article  Google Scholar 

  • Schneider BA (1969) A two-state analysis of fixed-interval responding in the pigeon. J Exp Anal Behav 12:677–687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siegel SF (1986) A test of the similarity rule model of temporal bisection. Learn Motiv 17:59–75

    Article  Google Scholar 

  • Singer R, Klein E, Zentall T (2006) Use of a single-code/default strategy by pigeons to acquire duration sample discriminations. Learn Motiv 34:340–347

    Google Scholar 

  • Skinner BF (1938) The behavior of organisms: an experimental analysis. Appleton-Century-Crofts, New York

    Google Scholar 

  • Spence KW (1936) The nature of discrimination learning in animals. Psychol Rev 43:427–449

    Article  Google Scholar 

  • Spence KW (1937) The differential response in animals to stimuli varying within a single dimension. Psychol Rev 44:430–444

    Article  Google Scholar 

  • Spence KW (1942) The basis of solution by chimpanzees of the intermediate size problem. J Exp Psychol 31:257–271

    Article  Google Scholar 

  • Spetch ML, Cheng K (1998) A step function in pigeons’ temporal generalization in the peak shift task. Anim Learn Behav 26:103–118

    Article  Google Scholar 

  • Staddon JER, Cerutti D (2003) Operant conditioning. Annu Rev Psychol 54:115–144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Staddon JER, Higa J (1999) Time and memory: towards a pacemaker-free theory of interval timing. J Exp Anal Behav 71:215–251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stagner JP, Michler DM, Rayburn-Reeves RM, Laude JR, Zentall TR (2013) Midsession reversal learning: why do pigeons anticipate and perseverate? Learn Behav 41:54–60

    Article  PubMed  PubMed Central  Google Scholar 

  • Stubbs DA (1976) Response bias and the discrimination of stimulus duration. J Exp Anal Behav 25:243–250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swanton DN, Matell MS (2011) Stimulus compounding in interval timing: the modality-duration relationship of the anchor durations results in qualitatively different response patterns to the compound cue. J Exp Psychol Anim Behav Process 37:94–107

    Article  PubMed  PubMed Central  Google Scholar 

  • Swanton DN, Gooch CM, Matell MS (2009) Averaging of temporal memories by rats. J Exp Psychol Anim Behav Process 35:434–439

    Article  PubMed  PubMed Central  Google Scholar 

  • Switalski RW, Lyons J, Thomas DR (1966) Effects of interdimensional training on stimulus generalization. J Exp Psychol 72:661–666

    Article  CAS  PubMed  Google Scholar 

  • Vieira de Castro AC, Machado A (2012) The interaction of temporal generalization gradients predicts the context effect. J Exp Anal Behav 97:263–279

    Article  Google Scholar 

  • Vieira de Castro AC, Machado A, Tomanari GY (2013) The context effect as interaction of temporal generalization gradients: testing the fundamental assumptions of the learning-to-time model. Behav Process 95:18–30

    Article  Google Scholar 

  • Vieira de Castro AC, Vasconcelos M, Machado A (2015) Temporal generalization gradients following an interdimensional discrimination training. Q J Exp Psychol 25:1–18

    Google Scholar 

  • Wearden JH, Edwards H, Fakhri M, Percival A (1998) Why “sounds are judged longer than lights”: application of a model of the internal clock in humans. Q J Exp Psychol 51:97–120

    CAS  Google Scholar 

  • Wearden JH, Norton R, Martin S, Montford-Bebb O (2007) Internal clock processes and the filled duration illusion. J Exp Psychol Hum Percept Perform 33:716–729

    Article  PubMed  Google Scholar 

  • Whitaker JS, Lowe CF, Wearden J (2003) Multiple-interval timing in rats: performance on two valued mixed fixed-interval schedules. J Exp Psychol Anim Behav Process 29:277–291

    Article  CAS  PubMed  Google Scholar 

  • Whitaker JS, Lowe CF, Wearden J (2008) When to respond? And how much? Temporal control and response output on mixed-fixed-interval schedules with unequally probable components. Behav Process 77:33–42

    Article  CAS  Google Scholar 

  • Wynne CDL, Staddon JER (1988) Typical delay determines waiting time on periodic-food schedules: static and dynamic tests. J Exp Anal Behav 50:197–210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeiler MD, Powell DG (1994) Temporal control in fixed-interval schedules. J Exp Anal Behav 61:1–9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zentall TR, Weaver JE, Clement TS (2004) Pigeons group time intervals according to their relative duration. Psychon Bull Rev 11:113–117

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors MPC, AM, and MV were supported by grants SFRH/BD/73875/2010, PTDC/MHC-PCN/3540/2012, and IF/01624/2013/CP1158/CT0012, respectively, from the Portuguese Foundation for Science and Technology. This study was conducted at the Psychology Research Centre, University of Minho, and partially supported by the Portuguese Foundation for Science and Technology and the Portuguese Ministry of Education and Science through national funds and when applicable co-financed by FEDER under the PT2020 Partnership Agreement (UID/PSI/01662/2013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marilia Pinheiro de Carvalho.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 38 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Carvalho, M.P., Machado, A. & Vasconcelos, M. Animal timing: a synthetic approach. Anim Cogn 19, 707–732 (2016). https://doi.org/10.1007/s10071-016-0977-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10071-016-0977-2

Keywords

Navigation