Skip to main content
Log in

Effect of seedling grade standard on improving the quality of licorice (Glycyrrhiza uralensis F.): changes in the seven bioactive components and root biomass during two-year growth

  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

A Correction to this article was published on 12 June 2018

This article has been updated

Abstract

Licorice cultivated is one of the most popular herbal medicines, while its quality is unstable. The aim of present study is to investigate the effect of licorice seedling grade standard on improving its quality. One-year-old Glycyrrhiza uralensis seedlings were classified into three grades 1, 2, and 3 by weight per plant. The major root biomass indexes (root fresh weight, root dry weight and taproot diameter) and contents of 7 bioactive components (glycyrrhizin, liquiritin, liquiritin apioside, liquiritigenin, isoliquiritin, isoliquiritin apioside, and isoliquiritigenin) varied in different grades seedlings. Further, the contents of 7 investigated compounds of 3-year-old licorice produced by grade 1 seedlings were 1.5–2 times as much as those produced by grade 2 and 3. Additionally, the contents of liquiritin apioside and isoliquiritin apioside were positively correlated with licorice root biomass. These results indicated that establishing licorice seedling grade standard is an effective way to improve and control its quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Change history

  • 12 June 2018

    In the original version of these 14 articles the reference list was unfortunately not represented according to the journal’s new bibliographical style, which should have been implemented from January 2018.

References

  1. Afreen F, Zobayed SMA, Kozai T. Melatonin in Glycyrrhiza uralensis: response of plant roots to spectral quality of light and UV-B radiation. J. Pineal Res. 41: 108–115 (2006)

    Article  CAS  PubMed  Google Scholar 

  2. Committee CP. Chinese pharmacopoeia. 9th ed. China Medica Science Press, Beijing, China (2010)

    Google Scholar 

  3. Downey MO, Harvey JS, Robinson SP. The effect of bunch shading on berry development and flavonoid accumulation in Shiraz grapes. Aust. J. Grape Wine Res. 10: 55–73 (2004)

    Article  CAS  Google Scholar 

  4. Fujii S, Tuvshintogtokh I, Mandakh B, Munkhjargal B, Uto T, Morinaga O, Shoyama Y. Screening of Glycyrrhiza uralensis Fisch. ex DC. containing high concentrations of glycyrrhizin by Eastern blotting and enzyme-linked immunosorbent assay using anti-glycyrrhizin monoclonal antibody for selective breeding of licorice. J. Nat. Med. 68: 717–722 (2014)

    Article  CAS  PubMed  Google Scholar 

  5. Gerhardt KE, Lampi MA, Greenberg BM. The effects of far-red light on plant growth and flavonoid accumulation in Brassica napus in the presence of ultraviolet B radiation. Photochem. Photobiol. 84: 1445–1454 (2008)

    Article  CAS  PubMed  Google Scholar 

  6. Guo ZZ, Wu YL, Wang RF, Wang WQ, Liu Y, Zhang XQ, Gao SR, Zhang Y, Wei SL. Distribution patterns of the contents of five active components in taproot and stolon of Glycyrrhiza uralensis. Biol. Pharm. Bull. 37: 1253–1258 (2014)

    Article  CAS  PubMed  Google Scholar 

  7. Hou JL, Li WD, Zheng QY, Wang WQ, Xiao B, Xing D. Effect of low light intensity on growth and accumulation of secondary metabolites in roots of Glycyrrhiza uralensis Fisch. Biochem. Syst. Ecol. 38: 160–168 (2010)

    Article  CAS  Google Scholar 

  8. Jayaprakasam B, Doddaga S, Wang R, Holmes D, Goldfarb J, Li XM. Licorice flavonoids inhibit eotaxin-1 secretion by human fetal lung fibroblasts in vitro. J. Agric. Food Chem. 57: 820–825 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kitagawa I, Chen WZ, Taniyama T, Harada E, Hori K, Kobayashi M, Ren J. Quantitative determination of constituents in various licorice roots by means of high performance liquid chromatography. Yakugaku Zasshi J. Pharm. Soc. Jpn. 118: 519-528 (1998)

    Article  CAS  Google Scholar 

  10. Kojoma M, Hayashi S, Shibata T, Yamamoto Y, Sekizaki H. Variation of glycyrrhizin and liquiritin contents within a population of 5-year-old licorice (Glycyrrhiza uralensis) plants cultivated under the same conditions. Biol. Pharm. Bull. 34: 1334–1337 (2011)

    Article  CAS  PubMed  Google Scholar 

  11. Lee YK, Chin YW, Bae JK, Seo JS, Choi YH. Pharmacokinetics of isoliquiritigenin and its metabolites in rats: low bioavailability is primarily due to the hepatic and intestinal metabolism. Planta Med. 79: 1656–1665 (2013)

    Article  CAS  PubMed  Google Scholar 

  12. Li WD, Hou JL, Wang WQ, Tang XM, Liu CL, Xing D. Effect of water deficit on biomass production and accumulation of secondary metabolites in roots of Glycyrrhiza uralensis. Russ. J. Plant Physiol. 58: 538–542 (2011)

    Article  CAS  Google Scholar 

  13. Miao X, Liu R, Liu H, Yu F, Wang J, Wang W, Wei S. Genetic and environmental effect on the growth characteristics and bioactive components of eight-year-old Glycyrrhiza uralensis Fisch. Agri Gene 3: 57–62 (2017)

    Article  Google Scholar 

  14. Seo CS, Shin HK. Simultaneous quantification of eight marker compounds in Yongdamsagan-Tang using a high-performance liquid chromatography equipped with photodiode array detector. J. Chromatogr. Sci. 55: 926–933 (2017)

    Article  CAS  PubMed  Google Scholar 

  15. Taniguchi C, Homma M, Takano O, Hirano T, Oka K, Aoyagi Y, Niitsuma T, Hayashi T. Pharmacological effects of urinary products obtained after treatment with saiboku-to, a herbal medicine for bronchial asthma, on type IV allergic reaction. Planta Med. 66: 607–611 (2000)

    Article  CAS  PubMed  Google Scholar 

  16. Tao W, Duan J, Zhao R, Li X, Yan H, Li J, Guo S, Yang N, Tang Y. Comparison of three officinal Chinese pharmacopoeia species of Glycyrrhiza based on separation and quantification of triterpene saponins and chemometrics analysis. Food Chem. 141: 1681–1689 (2013)

    Article  CAS  PubMed  Google Scholar 

  17. Wang D, Pang YX, Wang WQ, Wan CY, Hou JL, Yu FL, Wang QL, Liu FB, Zhang XD. Effect of molybdenum on secondary metabolic process of glycyrrhizic acid in Glycyrrhiza uralensis Fisch. Biochem. Syst. Ecol. 50: 93–100 (2013)

    Article  CAS  Google Scholar 

  18. Wang Y, Gao L, Shan Y, Liu Y, Tian Y, Xia T. Influence of shade on flavonoid biosynthesis in tea (Camellia sinensis (L.) O. Kuntze). Scientia Horticulturae 141: 7–16 (2012)

    Article  CAS  Google Scholar 

  19. Wang YC, Yang YS. Simultaneous quantification of flavonoids and triterpenoids in licorice using HPLC. J. Chromatography B Anal. Technol. Biomed. Life Sci. 850: 392–399 (2007)

    Article  CAS  Google Scholar 

  20. Yamamoto Y, Tani T. Field study and pharmaceutical evaluation of Glycyrrhiza uralensis roots cultivated in China (Material study). J. Tradit. Med. 22: 86–97 (2005)

    Google Scholar 

  21. Yu FL, Wang QL, Wei SL, Wang D, Fang YQ, Liu FB, Zhao ZG, Hou JL, Wang WQ. Effect of genotype and environment on five bioactive components of cultivated licorice (Glycyrrhiza uralensis) populations in Northern China. Biol. Pharm. Bull. 38: 75–81 (2015)

    Article  CAS  PubMed  Google Scholar 

  22. Zhang Q, Ye M. Chemical analysis of the Chinese herbal medicine Gan-Cao (licorice). J. Chromatogr. A 1216: 1954–1969 (2009)

    Article  CAS  PubMed  Google Scholar 

  23. Zhang YB, Wei XU, Yang XW, Yang XB, Wang WQ, Liu YM. Simultaneous determination of nine constituents in the roots and rhizomes of Glycyrrhiza uralensis from different producing areas by RP-HPLC. Chin. J. Pharm. Anal. 33: 214–219 (2013)

    Google Scholar 

Download references

Acknowledgement

This work is supported by National special research project of Chinese medicine industry “Base construction of national essential drugs required Chinese herbal medicine seeds and seedlings breeding” (2012-13) and General Scientific Research Project of Traditional Chinese Medicine in Gansu Province “Study on Reproduction Characteristics and Breeding Technique of Licorice” (GZK-2011-63).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Du.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 156 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, J., Guo, H., Du, T. et al. Effect of seedling grade standard on improving the quality of licorice (Glycyrrhiza uralensis F.): changes in the seven bioactive components and root biomass during two-year growth. Food Sci Biotechnol 27, 939–945 (2018). https://doi.org/10.1007/s10068-018-0333-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-018-0333-1

Keywords

Navigation