Skip to main content
Log in

The preservation effect of Metschnikowia pulcherrima yeast on anthracnose of postharvest mango fruits and the possible mechanism

  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

This study aimed to determine the effects of Metschnikowia pulcherrima yeast on storage quality of ‘Tainong’ mango, and elucidate it’s possible anti–disease mechanism. The results showed that M. pulcherrima could inhibit the changes in peel colour, fruit firmness, the contents of total soluble solids, total acid and vitamin C, and maintain the storage quality of mango fruits. An investigation of the mechanism showed that M. pulcherrima competed not only for the primary carbon source, but also for living space with Colletotrichum gloeosporioides. In addition, M. pulcherrima promoted the activities of defence-related enzymes, including ß-1,3-glucanase(GLU) and chitinase (CHT), and secreted a small amount of antimicrobial substances composed of volatile and nonvolatile anti-fungal compounds. The results strongly demonstrated that antagonistic yeast M. pulcherrima could be applied as a biocontrol agent for deducing the spoilage and decay of mango fruit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Mahunu M, Zhang HY, Yang QY, Zhang XY, Li DD, Zhou YX. Improving the biocontrol efficacy of Pichia caribbica with phytic acid against postharvest blue mold and natural decay in apples. Biol. Control. 92:172–180 (2016).

    Article  CAS  Google Scholar 

  2. Zhang HY, Ma LC, Jiang S. SaLicylic acid enhances biocontrol efficacy of Rhodotorula glutinis against postharvest Rhizopus rot of strawberries and the possible mechanisms involved. Int. J. Food Microbiol. 141: 122–125 (2010).

    Article  CAS  Google Scholar 

  3. Zhu RY, Lu LF, Lu HP. Postharvest control of green moLd decay of citrus fruit using combined treatment with sodium bicarbonate and Rhodosporidium paludigenum. Food Biopro. Technol. 6: 2925–2930 (2013).

    Article  CAS  Google Scholar 

  4. Bautista-Rosales PU, Calderon-Santoyo M, Servín-Villegas R, Ochoa-Álvarez NA, Ragazzo-Sánchez JA. Action mechanisms of the yeast Meyerozyma caribbica for the control of the phytopathogen Colletotrichum gloeosporioides in mangoes. Biol. Control 65:293–301 (2013).

    Article  Google Scholar 

  5. Jat BL, Sharma P, Gour HN. Production of Enzymes and Culture Filtrates by Colletotrichum gloeosporioides Penz. Causing Banana Fruit Rot. Production of Enzymes and Culture Filtrates 83:177–180 (2013).

  6. Campos-Martínez A,Velazquez-del Valle MG, Flores-Moctezuma HE, Suarez-Rodríguez R, Ramírez-TrujiLLo JA, Hernandez-Lauzardo AN. Antagonistic yeasts with potential to control Colletotrichum gloeosporioides (Penz.) Penz. and Sacc. and Colletotrichum acutatum J.H. Simmonds on avocado fruits. Crop Prot. 89: 101–104 (2016).

    Article  Google Scholar 

  7. Guo J, Fang WW, Lu HP, Zhu RY, Lu LF, Zheng XD, Yu T. Inhibition of green mold disease in mandarins by preventive applications of methyl jasmonate and antagonistic yeast Cryptococcus Laurentii. Postha. Biol. Technol. 88:72–78 (2014).

    Article  CAS  Google Scholar 

  8. Grzegorczyk M, Żarowska B, Restuccia C, Cirvilleri G. Postharvest biocontrol ability of killer yeasts against Monilinia fructigena and Monilinia fructicola on stone fruit. Food Microbiol. 61: 93–101 (2017).

    Article  Google Scholar 

  9. Tang JM, Liu YQ, Li HH, Wang LM, Huang K, Chen ZX. Combining an antagonistic yeast with harpin treatment to control postharvest decay of kiwifruit. Biol. Control 89: 61–67 (2015).

    Article  CAS  Google Scholar 

  10. Ponsone ML, Nally MC, Chiotta ML, Combina M, KöhL J, Chulze SN. Evaluation of the effectiveness of potential biocontrol yeasts against black sur rot and ochratoxin A occurring under greenhouse and field grape production conditions. Biol. Control 103: 78–85 (2016).

    Article  Google Scholar 

  11. Graeme M, Walke R, Anne H, Mcleod Valerie J, Hodgson K. Interactions between killer yeasts and pathogenic fungi. FEMS Micro. Lett. 127: 213–222 (1995).

    Article  Google Scholar 

  12. Tian SP, Fan Q, Xu Y, Jiang AL. Effects of caLcium on biocontrol activity of yeast antagonists against the postharvest fungal pathogen Rhizopus stolonifer. Plant Pathol. 51: 352–358 (2002).

    Article  Google Scholar 

  13. Usall J, Torres R, Teixido N. Biological control of postharvest diseases on fruit: a suitable alternative. Curr. Opin Food Sci. 11: 51–55 (2016).

    Article  Google Scholar 

  14. Jamalizadeh M, Etebarian HR, Aminian H, Alizadeh A. A review of mechanisms of action of biological control organisms against post-harvest fruit spoilage. EPPO Bull 41: 65–71 (2011).

    Article  Google Scholar 

  15. Bautista-Rosales PU, CaLderon-Santoyo M, Servín-Villegas R, Ochoa-Álvarez NA, Ragazzo-Sánchez JA. Biocontrol action mechanisms of Cryptococcus Laurentii on Colletotrichum gloeosporioides of mango. Crop Prot. 65:194–201 (2014).

    Article  Google Scholar 

  16. Chi MS, Li GK, Liu YS, Liu GQ, Li M, Zhang XJ, Sun ZQ, Sui Y, Liu J. Increase in antioxidant enzyme activity, stress tolerance and biocontrol efficacy of Pichia kudriavzevii with the transition from a yeast-like to biofilm morphology. Biol. Control 90: 113–119 (2015).

    Article  CAS  Google Scholar 

  17. Jin P, Zheng C, Huang YP, Wang XL, Luo ZS, Zheng YH. Hot air treatment activates defense responses and induces resistance against Botrytis cinerea in strawberry fruit. J. Integ. Agric. 15: 2658–2665 (2016).

    Article  CAS  Google Scholar 

  18. Kwon MJ, Wei N, Millerick K, Popovic J, Finneran K. Clostridium geopurificans strain MJ1 sp. nov., a strictly anaerobic bacterium that grows via fermentation and reduces the cyclic nitramine explosive hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX). Curr. Microbiol. 68: 743–750 (2014).

    Article  CAS  Google Scholar 

  19. Hartman GL, Pawlowski ML, Chang HX, Hill CB. Successful Technologies and Approaches Used to Develop and Manage resistance against Crop disease and Pests. Emerging Technologies for Promoting Food Security. 8: 43–66 (2016).

    Article  Google Scholar 

  20. Parafati L, Vitale A, Restuccia C, Cirvilleri G. Biocontrol ability and action mechanism of food-isolated yeast strains against Botrytis cinerea causing postharvest bunch rot of table grape. Food Microbiol. 47:85–92. (2015).

    Article  CAS  Google Scholar 

  21. Chan,Z.L. and Tian, S.P. Interaction of antagonistic yeast against postharvest pathogens of apple fruit and possible mode of action. Postha. Biol. Technol., 36, 215–223. (2005).

    Article  CAS  Google Scholar 

  22. Spadaro, D. and Droby, S. (2016). Development of biocontrol products for postharvest diseases of fruit, The importance of elucidating the mechanisms of action of yeast Antagonists. Tre. Food Sci. Technol., 47, 39–49.

    Article  CAS  Google Scholar 

  23. Luo SS, Wan B, Feng SH, ShaoYZ. BiocontroL of Postharvest Anthracnose of Mango Fruit with Debaryomyces Nepalensis and Effects on Storage Quality and Postharvest physiology. J. Food Sci. 80: 2555–2563 (2015).

    Article  Google Scholar 

  24. Shao YZ, Xie JH, Chen P, Li W. Changes in some chemical components and in the physiology of rambutan fruit (Nephelium lappaceum L.) as affected by storage temperature and packing material. Fruits 68 (1): 15–24 (2013).

    Article  CAS  Google Scholar 

  25. Ippolito A, Ghaouth AE, Wilson CL, Wisniewski M. Control of postharvest decay of apple fruit with Candida saitoana and induction of defense responses. Phytopathol. 93: 344–348 (2003).

    Article  Google Scholar 

  26. Wirth SJ, Wolf GA. Dye-Labelled substrates for the assay and detection of chitinase and lysozyme activity. J. Micro. Meth. 11: 197–205 (1990).

    Article  Google Scholar 

  27. Mackie AE, Wheatley RE. Effects and incidence of volatile organic compound interactions between soil bacterial and fungal isoLates. Soil Biol. Biochem. 31(3): 375–385 (1999).

    Article  CAS  Google Scholar 

  28. Sharma RR, Singh D, Singh R. Biological control of postharvest diseases offruits and vegetables by microbial antagonists: a review. Biol. Control 50:205–221 (2009).

    Article  Google Scholar 

  29. Spadaro D, Ciavorella A, Zhang D, Garibaldi A, Gullino ML. Effect of culture media and pH on the biomass production and biocontrol efficacy of a M. pulcherrimastrain to be used a fungicide for postharvest disease control. Can. J. Microbiol. 56: 128–137 (2010).

    Article  CAS  Google Scholar 

  30. Keshavarz-Tohid V, Taheri P, Taghavi SM, Tarighi S. The role of nitric oxide in basal and induced resistance in relation with hydrogen peroxide and antioxidant enzymes. J. Plant Physiol. 199: 29–38 (2016).

    Article  CAS  Google Scholar 

  31. Ferraz LP, da Cunha T, da Silva AC, Kupper KC. Biocontrol ability and putative mode of action of yeasts against Geotrichum citri-aurantii in citrus fruit. Microbiol. Res. 188: 72–79 (2016).

    Article  Google Scholar 

  32. Esposito-Polesi NP, de Abreu-Tarazi MF, de ALmeida CV, de Almeida ML. Investigation of Endophytic Bacterial Community in Supposedly Axenic Cultures of Pineapple and Orchids with Evidence on Abundant Intracellular Bacteria. Curr. Microbiol. 74: 103–113 (2017).

    Article  CAS  Google Scholar 

  33. Yang JL, Sun C, Zhang YY, Fu D, Zheng KD, Yu T. Induced resistance in tomato fruit by c-aminobutyric acid for the control of aLternaria rot caused by Alternaria alternate. Food Chem. 221: 1014–1020 (2017).

    Article  CAS  Google Scholar 

  34. Zhang ZK, Yang DQ, Yang B, Gao ZY, Li M, Jiang YM, Hu MJ. ß-Aminobutyric acid induces resistance of mango fruit to postharvest anthracnose caused by Colletotrichum gloeosporioides and enhances activity of fruit defense mechanisms. Sci. Horti. 160: 78–84 (2013).

    Article  CAS  Google Scholar 

  35. Roberti R, Veronesi A, Cesari A, Cascone A, Di Berardino I, Bertini L, Caruso C. Induction of PR proteins and resistance by the biocontrol agent Clonostachys rosea in wheat plants infected with Fusarium culmorum. Plant Sci. 175: 339–347 (2008).

    Article  CAS  Google Scholar 

  36. Da Silva Felix K, da Silva CL, de Oliveira WJ, de Lima Ramos Mariano R, de Souza EB. Calcium-mediated reduction of soft rot disease in Chinese cabbage. Europ. J. Plant Pathol. 147:73–84 (2017) DOI: 10.1007/s10658-016-0980-0.

  37. Kumar PS,Duraipandiyan V,Ignacimuthu S.Isolation,screening and partial purification of antimicrobial antibiotics from soil Streptomyces sp. SCA 7.Kaohsiungd MedSci. 30: 435–446 (2014).

  38. Kai M,Effmert U,Berg G, Piechulla B.Volatiles ofbacterial antagonists inhibit mycelial growth of the plant pathogen Rhizoctonia solani.Arch Microbiol. 187: 351–360 (2007).

    Article  CAS  Google Scholar 

  39. Theis T, Stahl U. Antifungal proteins, targets, mechanisms and prospective applications. Cellu Mole. Life Sci. Cmls. 61: 437–455 (2004).

    Article  CAS  Google Scholar 

  40. Castoria R, Curtis FD, Lima G, Cicco VD. ß-1,3-glucanase activity of two saprophytic yeasts and possible mode of action as biocontrol agents against postharvest diseases. Postha. Biol. Techno. 12: 293–300 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by the Project of the National Natural Science Foundation of China (No. 31660587), and it represents part of work for the project of the Key Research and Development of Science and Technology Department in Hainan Province (ZDYF2016043).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wen Li or Yuan-zhi Shao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, Yq., Li, W., Jiang, Zt. et al. The preservation effect of Metschnikowia pulcherrima yeast on anthracnose of postharvest mango fruits and the possible mechanism. Food Sci Biotechnol 27, 95–105 (2018). https://doi.org/10.1007/s10068-017-0213-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-017-0213-0

Keywords

Navigation