Skip to main content
Log in

Antioxidant properties of Korean major persimmon (Diospyros kaki) leaves

  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

Persimmon is one of the most common native fruits of South Korea and its leaves are well known to be used in pharmaceuticals, cosmetics as well as beverages. The aim of this study was to compare the antioxidant properties of Korean major persimmon leaves on the basis of drying methods (hot air drying and freeze-drying) and harvesting time. Persimmon leaves from five cultivars (‘Sangju-dungsi’, ‘Sangam-dungsi’, ‘Cheongdobansi’, ‘Gabjubaekmok’ and ‘Suhong’) were harvested in late May and late June followed by blanching and drying. Results depicted that, persimmon leaves harvested in late May had the highest amount of antioxidants content compared to the late June. No significant difference was found between HAD and FD treatment with respect to total phenol, total flavonoid, tannin content, ABTS and DPPH radical-scavenging activity. Finally, it can be concluded that ‘Gabjubaekmok’ persimmon leaves collected during late May and dried by hot air are richer in antioxidants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Matsuo T, Ito S. The chemical structure of kaki-tannin from immature fruit of the persimmon (Diospyros kaki L.). Agric. Biol. Chem. 42: 1637–1643 (1978).

    CAS  Google Scholar 

  2. Jo C, Son JH, Shin MG, Byun MW. Irradiation effects on color and functional properties of persimmon (Diospyros kaki L. folium) leaf extract and licorice (Glycyrrhiza Uralensis Fischer) root extract during storage. Radiat. Phys. Chem. 67: 143–148 (2002).

    Article  Google Scholar 

  3. Kameda K, Takaku T, Okuda H, Kimura Y, Okuda T, Hatano T, Agata I, Arichi S. Inhibitory effects of various flavonoids isolated from leaves of persimmon on angiotensin-converting enzyme activity. J. Nat. Prod. 50(4): 680–683 (1987).

    Article  CAS  Google Scholar 

  4. Rogerio AP, Dora CL, Andrade EL, Chaves JS, Silva LFC, Lemos-Senna E, Calixto JB. Anti-inflammatory effect of quercetin-loaded microemulsion in the airways allergic inflammatory model in mice. Pharmacol. Res. 61(4): 288–297 (2010).

    Article  CAS  Google Scholar 

  5. Kim JK, Choi SJ, Cho HY, Hwang HJ, Kim YJ, Lim ST, Kim CJ, Kim HK, Peterson S, Shin DH. Protective effects of kaempferol (3,4′,5,7-tetrahydroxyflavone) against amyloid beta peptide (Abeta)-induced neurotoxicity in ICR mice. Biosci. Biotechnol. Biochem. 74(2): 397–401 (2010).

    Article  CAS  Google Scholar 

  6. Xie C, Xie Z, Xu X, Yang D. Persimmon (Diospyros kaki L.) leaves: A review on traditional uses, phytochemistry and pharmacological properties. J. Ethnopharmacol. 163: 229–240 (2015).

    Article  CAS  Google Scholar 

  7. Kawakami K, Aketa S, Sakai H, Watanabe Y, Nishida H, Hirayama M. Antihypertensive and vasorelaxant effects of water-soluble proanthocyanidins from persimmon leaf tea in spontaneously hypertensive rats. Biosci. Biotechnol. Biochem. 75(8): 1435–1439 (2011).

    Article  CAS  Google Scholar 

  8. Kawakami K, Aketa S, Nakanami M, Iizuka S, Hirayama M. Major water-soluble polyphenols, proanthocyanidins, in leaves of persimmon (Diospyros kaki) and their α-amylase inhibitory activity. Biosci. Biotechnol. Biochem. 74(7): 1380–1385 (2010).

    Article  CAS  Google Scholar 

  9. Wang L, Xu ML, Rasmussen SK, Wang MH. Vomifoliol 9-O-α-arabinofuranosyl (1 → 6)-β-D-glucopyranoside from the leaves of Diospyros Kaki stimulates the glucose uptake in HepG2 and 3T3-L1 cells. Carbohydr. Res. 346(10): 1212–1216 (2011).

    Article  CAS  Google Scholar 

  10. Kotani M, Matsumoto M, Fujita A, Higa S, Wang W, Suemura M, Kishimoto T, Tanaka T. Persimmon leaf extract and astragalin inhibit development of dermatitis and IgE elevation in NC/NGa mice. J. Allergy Clin. Immunol. 106(1 I): 159–166 (2000).

    Article  CAS  Google Scholar 

  11. Choi C. Studies on investigation into biologically activated substances from Korean persimmon leaves and developing high function beverages. Report of Ministry of Agriculture and Forestry. 149–150 (2000).

  12. Funayama S, Hikino H. Hypotensive principles of Diospyros kaki leaves. Chem. Pharm. Bull. 27: 2865–2867 (1979).

    Article  CAS  Google Scholar 

  13. Uchida S, Edamatsu R, Hiramatsu M, Mori A, Nonaka GY, Nishioka I, Niwa M, Ozaki M. Condensed tannins scavenge active oxygen free radicals. Med. Sci. Res. 15: 831–834 (1985).

    Google Scholar 

  14. Kim GY, Kim JK, Kang WW, Kim JG, Joo GJ. Shelf-life extension of rice cake by the addition of persimmon leaf tea powder. Food Sci. Biotechnol. 14(2): 196–199 (2005).

    Google Scholar 

  15. Lim JA, Lee JH. Quality characteristics and antioxidant properties of cookies supplemented with persimmon leaf powder. Korean J. Food Sci. Technol. 48(2): 159–164 (2016).

    Article  Google Scholar 

  16. Ladas SD, Kamberoglou D, Karamanolis G, Vlachogiannakos J, Zouboulis-Vafiadis I. Systematic review: Coca-Cola can effectively dissolve gastric phytobezoars as a first-line treatment. Aliment. Pharmacol. Ther. 37(2): 169–73 (2013).

    Article  CAS  Google Scholar 

  17. Pinela J, Barros L, Dueñas M, Carvalho AM, Santos-Buelga C, Ferreira ICFR. Antioxidant activity, ascorbic acid, phenolic compounds and sugars of wild and commercial Tuberaria lignosa samples: Effects of drying and oral preparation methods. Food Chem. 135(3): 1028–1035 (2012).

    Article  CAS  Google Scholar 

  18. Singleton VL, Rossi JA Jr. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 16(3): 144–158 (1965).

    CAS  Google Scholar 

  19. Dewanto V, Wu X, Adom KK, Liu R H. Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity. J. Agric. Food Chem. 50: 3010–3014 (2002).

    Article  CAS  Google Scholar 

  20. Broadhurst RB, Jones WT. Analysis of condensed tannins using acidified vanillin. J. Sci. Food Agric. 29(9): 788–794 (1978).

    Article  CAS  Google Scholar 

  21. Xu BJ, Chang SKC. A comparative study on phenolic profiles and antioxidant activities of legumes as affected by extraction solvents. J. Food Sci. 72(2): 159–166 (2007).

    Article  Google Scholar 

  22. Shahidi F, Liyana-Pathiran CM, Wall DS. Antioxidant activity of white and black sesame seeds and their hull fractions. Food Chem. 99(3): 478–483 (2006).

    Article  CAS  Google Scholar 

  23. Thaipong K, Boonprakob U, Crosby K, Cisneros-Zevallos L, Hawkins-Byrne D. Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. J. Food Compos. Anal. 19(6–7): 669–675 (2006).

    Article  CAS  Google Scholar 

  24. Dorta E, Lobo MG, Gonza´lez M. Using drying treatments to stabilise mango peel and seed: Effect on antioxidant activity. LWT - Food Sci. Technol. 45: 261–268 (2012).

    Article  Google Scholar 

  25. Martínez-Las HR, Heredia A, Castelló ML, Andrés A. Influence of drying method and extraction variables on the antioxidant properties of persimmon leaves. Food Biosci. 6:1–8 (2014).

    Article  Google Scholar 

  26. Ashie INA, Simpson BK. Application of high hydrostatic pressure to control enzyme related fresh seafood texture deterioration. Food Res. Int. 29(5–6): 569–575 (1996).

    Article  CAS  Google Scholar 

  27. Arslan D, Özcan MM. Study the effect of sun, oven and microwave drying on quality of onion slices. LWT–Food Sci. Technol. 43(7): 1121–1127 (2010).

    CAS  Google Scholar 

  28. Jung WY, Jeong JM. Change of antioxidative activity at different harvest time and improvement of atopic dermatitis effects for persimmon leaf extract. Korea J. Herbol. 27(1): 41–49 (2012).

    Article  Google Scholar 

  29. Chung SH, Moon KD, Kim JK, Seong JH, Sohn TH. Changes of chemical components in persimmon leaves during growth for processing persimmon leaves tea. Korean J. Food Sci. Technol. 26(2): 141–146 (1994).

    Google Scholar 

  30. Zou Y, Liao S, Shen W, Liu F, Tang C, Chen CYO, Sun Y. Phenolics and antioxidant activity of mulberry leaves depend on cultivar and harvest month in southern China. Int. J. Mol. Sci. 13(12): 16544–16553 (2012).

    Article  CAS  Google Scholar 

  31. Peixoto STJS, Cardoso KCM, Gomes TLB, Albuquerque UP, Amorim ELC. Validation of spectrophotometric methodology for quantify flavonoid content in Bauhinia cheilantha (Bongard) Steudel. Braz. J. Pharm. Sci. 44(4): 683–689 (2008).

    Google Scholar 

  32. Alonzo-macías M, Cardador-martínez A, Mounir S, Montejano-Gaitan G, Allaf K. Comparative study of the effects of drying methods on antioxidant activity of dried strawberry (Fragaria Var. Camarosa). J. Food Res. 2(2): 92–107 (2013).

    Article  Google Scholar 

  33. Horszwald A, Julien H, Andlauer W. Characterisation of Aronia powders obtained by different drying processes. Food Chem. 141(3): 2858–2863 (2013).

    Article  CAS  Google Scholar 

  34. Stewart JL, Mould F, Mueller-Harvey I. The effect of drying treatment on the fodder quality and tannin content of two provenances of Calliandra calothyrsus Meissner. J. Sci. Food Agric. 80(10): 1461–1468 (2000).

    Article  CAS  Google Scholar 

  35. Scogings PF, Dziba LE, Gordon IJ. Leaf chemistry of woody plants in relation to season, canopy retention and goat browsing in a semiarid subtropical savanna. Austral Ecol. 29(3): 278–286 (2004).

    Article  Google Scholar 

  36. Si X, Chen Q, Bi J, Wu X, Yi J, Zhou L, Li Z. Comparison of different drying methods on the physical properties, bioactive compounds and antioxidant activity of raspberry powders. J. Sci. Food Agric. 96(6): 2055–62 (2015).

    Article  Google Scholar 

  37. Wang SY. Effect of pre-harvest conditions on the antioxidant capacity in fruits. Acta Hortic. 712: 299–305 (2006).

    Article  CAS  Google Scholar 

  38. Lee BW, Lee JH, Gal SW, Moon YH, Park KH. Selective ABTS radical-scavenging activity of prenylated flavonoids from Cudrania tricuspidata. Biosci. Biotechnol. Biochem. 70(2): 427–432 (2006).

    Article  CAS  Google Scholar 

  39. Sývacý A, Sökmen M. Seasonal changes in antioxidant activity, total phenolic and anthocyanin constituent of the stems of two Morus species (Morus alba L. and Morus nigra L.). Plant Growth Regul. 44(3): 251–256 (2004).

    Article  Google Scholar 

Download references

Acknowledgements

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors. However, the authors are grateful to persimmon experiment station (Sangju) for supplying persimmon leaves during the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong-Kuk Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hossain, A., Moon, H.K. & Kim, JK. Antioxidant properties of Korean major persimmon (Diospyros kaki) leaves. Food Sci Biotechnol 27, 177–184 (2018). https://doi.org/10.1007/s10068-017-0195-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-017-0195-y

Keywords

Navigation